
Содержание		3.3.21 3.3.22	Свойства Maxicode
Введені	ие 3	3.3.23	Свойства MicroPDF41780
1.	Заводские настройки (значения,	4.	Свойства формата ШК81
	вуемые по умолчанию)6		
		4.1 4.2	Преобразование регистра
2.	Настройки интерфейса8	4.2	установка префикса и суффикса
2.1	RS-2329	4.2.1	Установка префикса88
	Настройки скорости передачи	4.2.2	Установка суффикса91
	10	421	C
2.1.2	Биты данных и четности и стоп-биты11	4.3.1 4.3.2	Символы прямого ввода94 Дополнительные символы прямого ввода97
2.1.3 2.1.4	Подтверждение приема .12 Межсимвольная задержка .15	4.3.3	Дифры (прямой ввод)100
2.1.4	тежсимвольная задержка	4.3.4	Буквы (прямой ввод)101
2.2	USB/клавиатура16	4.3.5	Буквы в нижнем регистре103
2.2.1	Раскладка клавиатуры17	4.3.6	Прямой ввод управляющих символов105
2.2.2	Дополнительные параметры19	4.3.7	Прямой ввод идентификатора кода и ины108
2.2.3	Межсимвольная задержка для	дл	HIIDI190
USB/KJI	авиатуры20	5.	Настройки свойств считывания109
2.3	Беспроводное подключение22		-
2.3.1	Bluetooth адрес23	5.1	Режимы считывания110
2.3.2	Безопасность соединения25	5.1.1	Задание интервала времени до повторного
2.3.3	Настройки кнопки сканирования		ания112
2.3.4 2.3.5	Время удержания (для разрыва связи)28 Автоматический разрыв связи29	5.1.2	Свойства «свободной» зоны («тихой»113
2.3.6	Автоматическое восстановление	5.1.3	Режим автоматического считывания114
	очения30		
2.3.7	Сохранение энергии при использовании	5.2	Настройки времени сканирования114
	водной связи31	5.3	Контроль потребления электроэнергии116
2.3.8	Сохранение данных	5.4	Избыточность
3. Hac	стройки ШК	5.5 5.6	Стандартные и инверсные ШК119 Разрешение и плотность120
J. 1140	проими шк	3.0	т азрешение и плотность120
3.1 типов I	Установка разрешенных для считывания ШК	6.	Настройка индикаторов122
	Разрешить считывать один тип	6.1	Настройки звуковой индикации123
3.1.2	Разрешить считывать множество типов39	6.2	Визуальная индикация при успешном
3.2	Установка допустимой длины ШК43	считыв	ании125
J. <u>2</u>	o cranobka gonycinmon gjimbi mix	7.	Другие свойства126
3.3	Настройка специальных свойств ШК47	7.	другие своиства120
3.3.1	Свойства UPC-А	7.1	Диагностика126
3.3.2 3.3.3	Свойства UPC-Е	7.2	Настройка возможностей конфигурирования
3.3.4	Свойства Code 39 и Italian Pharmaceutical53	через п	оследовательный интерфейс127
3.3.5	Свойства Codabar		V
3.3.6	Свойства 2of5 и S-Code60	A B	Устранение неполадок
3.3.7	Свойства ІАТА62	D	примеры шк
3.3.8	Свойства MSI/Plessey63		
3.3.9 3.3.10	Свойства Telepen		
	Свойства Соde 128 и EAN-12867		
3.3.12	Свойства Code 9369		
3.3.13	Свойства Code 1171		
3.3.14	Свойства Korean Postal Authority72		
3.3.15	Свойства RSS		
	Свойства составных ШК		
	Свойства Aztec		
3.3.19	Свойства QR Code77		
3.3.20	Свойства Micro QR Code78		

Введение

Данное руководство предназначено для конфигурирования сканера под специфические нужды пользователя. Запрограммированная конфигурация сохраняется в памяти сканера даже после его выключения. Настройки сканера всегда можно сбросить на заводские, считав специальный штриховой код (ШК).

Настроечные ШК.

Настройка свойств сканера происходит посредством считывания настроечных ШК из таблиц. Структура таблиц разъяснена на рисунке 1.

В некоторых главах настроечные ШК помимо настройки свойств сканера могут использоваться как команды. Для посылки команды в порт необходимо просто считать ШК, не входя в режим программирования. Команды исполняются сразу, и, в отличие от свойств, не хранятся в энергонезависимой памяти сканера.

Настройка свойств сканера посредством настроечных ШК.

Для настройки свойств сканера выполните следующие шаги: считайте ШК SET; считайте необходимый(ые) ШК; считайте ШК END.

Для быстрой настройки сканера рекомендуется выполнить следующие шаги:

перед подключением интерфейсных кабелей убедитесь, что устройство не подключено к сети. Питание следует подавать только после того, как все кабели подключены.

- 1: в первой главе руководства представлены настроечные ШК для сброса настроек свойств сканера на заводские.
- *теперь настройки сканера сброшены на заводские.
- 2: во второй главе руководства представлены ШК для настроек свойств интерфейсов связи.
- *теперь сканер может считывать ШК и передавать данные на ПК.
- 3: в третьей главе руководства представлены ШК для настроек типов считываемых ШК и их свойств.
- *теперь сканер может считывать заданные типы ШК, проверять данные по длине и проверочному символу и передавать заданную часть данных.
- 4: в четвертой главе руководства представлены ШК для настройки строковых параметров, таких как передача длины ШК, преобразование регистра, задание префикса или суффикса, и т.п.
- *теперь сканер может считывать и передавать данные в заданном формате.
- 5: в пятой главе руководства представлены ШК для настроек свойств сканера, таких как метод считывания, время считывания, избыточность, и т.п.
- 6: в шестой главе руководства представлены ШК для настройки визуальной и звуковой индикаций.

Настройка через RS-232

<ESC>

<ESC> - символ «выход» ASCII (в шестнадцатеричной системе – 1В)

<Команда>

<Команда> - команда ASCII с набором параметров в том же порядке, как если бы они считывались из этого руководства. Например, команда ASCII <ESC>M41B<CR> включает передачу кода ASCII <STX> в качестве префикса при считывании ШК типа Code39.

В шестнадцатеричном формате данная команда выглядит следующим образом:

1B 4D 34 31 4B 0D

Каждая команда, состоящая из 3-х символов, должна начинаться с квадратной скобки «[», например, команда, разрешающая считывания ШК типа Data Matrix: <Esc>[BCC<CR>.Каждая команда, состоящая из 4-х символов, должна начинаться с квадратной скобки «]», например, команда, запрещающая автоматическое подключении: <Esc>]DIAU<CR>.

<CR>

<CR> - символ «возврат каретки» ASCII ((в шестнадцатеричной системе - 0D).

$\mathbb{Z}2$

Z2 – некоторые свойства (например, скорость передачи данных) вступают в силу не сразу. Однако большинство свойств начинают работать сразу после окончания программирования. Чтобы записать все свойства в энергонезависимую память, необходимо подать команду Z2.

Указанные ниже команды могут быть использованы для того, чтобы:

Команда В –подать звук успешного считывания

Команда Е – подать звук ошибки считывания

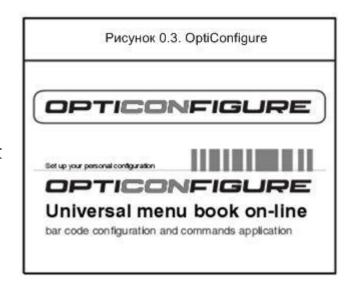
Команда L – включить индикатор успешного считывания

Команда N - включить индикатор неуспешного считывания

Команда О – включить оба индикатора

Команда У – отключить кнопку сканирования

Команда Z – включить кнопку сканирования


Команда Р – выключить лазер

Команда Q – включить лазер

Для корректного распознавания и выполнения команд между передаваемыми символами должна присутствовать межсимвольная задержка.

Настройка через OptiConfigure

OptiConfigure — это интерактивное руководство по программированию. С помощью руководства OptiConfigure появляется возможность составления алгоритма программирования сканера в режиме online. OptiConfigure поддерживает все считыватели Opticon, которые могут быть запрограммированы с помощью данного руководства. Также, OptiConfigure предлагает вниманию специфические, редко используемые ШК. Данные ШК показываются OptiConfigure в зависимости от указанной модели и версии прошивки.

1. Заводские настройки (значения, используемые по умолчанию)

Данный вид настроечных ШК позволяет отменить все ранее запрограммированные настройки и установить свойства сканера по умолчанию. В настроечных таблицах заводские настройки выделены жирным шрифтом.

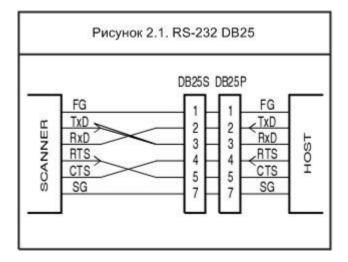
В зависимости от интерфейса подключения настройки сканера отличаются.

Следует выбирать только настройки, соответствующие типу интерфейса сканера.

Поддерживаемые типы интерфейсов зависят от модели и версии прошивки.

В случае отсутствия настроек для Вашего типа интерфейса следует связаться с поставщиком.

Заводские настройки

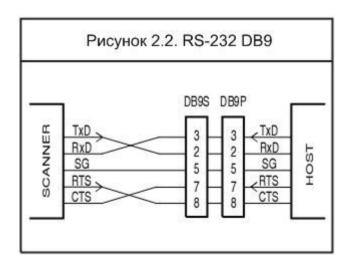

	SET	
RS232	U2	
Serial TTL	SS	
AT wedge	UB	
USB-HID	SU	
USB-VCP	C01	
Bluetooth	so	
IEEE 802.15.4	SM	
	END	

2. Настройки интерфейса

В данной главе описываются настройки свойств передачи данных. Некоторые свойства могут быть недоступными для определенного типа интерфейса. Попытка запрограммировать такие недоступные свойства приведет к тому, что сканер будет издавать звуковой сигнал, сигнализирующий об ошибке.

2.1 RS-232

Данный параграф описывает настройку свойств сканера с интерфейсом RS-232. Обычно сканеры с интерфейсом RS-232 поставляются с разъемом DB25 или DB9 типа «мама». Также в кабеле имеется разъем для подачи питания. Схемы представлены на рисунках 2.1 и 2.2.



TxD (**Transmitted Data**): передача данных от сканера к ПК. Использование обязательно. **RxD** (**Received Data**): передача данных от ПК к сканеру. Используется в случае, когда сканеру необходимо передать команду или если используется программное квитирование или подтверждение приема.

RTS (Request To Send): запрос на передачу данных. Используется для аппаратного управления потоком. Использование необязательно.

CTS (**Clear To Send**): разрешение на передачу данных. Используется для аппаратного управления потоком. Использование необязательно.

SG (**Signal Ground**): служит для подачи питания и передачи сигналов. Использование обязательно.

Расшифровка контактов со стороны сканера:

FG (**frame ground**): данный контакт замыкается на корпус ПК. При использовании протокола RS-232 использование данного контакта необязательно.

2.1.1 Настройки скорости передачи данных

Скорость передачи данных — это скорость, с которой данные передаются от сканера к ПК, и наоборот. Скорость передачи измеряется в бодах (baud). Сканер и порт, к которому подключен сканер, должны быть настроены на одну и ту же скорость.

	SET	
150 baud	K0	
300 baud	K1	
600 baud	K2	
1200 baud	K3	
2400 baud	K4	
4800 baud	K5	
9600 baud	K6	
19200 baud	K7	
38400 baud	K8	
57600 baud	K9	
115200 baud	SZ	
	END	

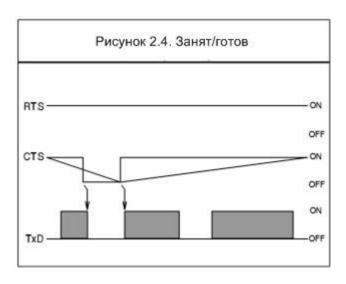
2.1.2 Биты данных и четности и стоп-биты

Символы данных могут быть переданы в одном из форматов, указанных на рисунке 2.3.

Бит четности может быть добавлен к любому символу. Таким образом, число единиц в данных, вместе с битом четности, будет четным при контроле по четности и нечетным при контроле по нечетности.

	SET	
7 битов данных	LO	
8 битов данных	L1	
Нет бита четности	L2	
Четный	L3	
Нечетный	L4	
1 стоповый бит	L5	
2 стоповых бита	L6	
	END	

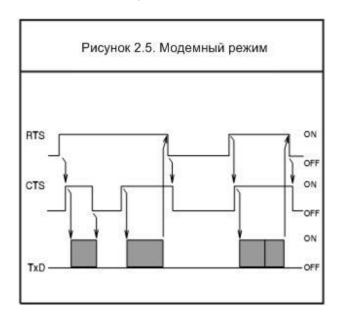
2.1.3 Подтверждение приема


Возможно аппаратное (модем, занят/готов) и программное (XON/XOFF) управление потоком данных. Также, опционально возможен контроль подтверждения приема (ACK/NAK с подтверждением или без). Контроль потока данных и подтверждения приема могут осуществляться одновременно. Уровни напряжения (RS-232), используемые большинством сканеров, равны -10 В (OFF) или +10 В (ON).

1. Без подтверждения приема.

Подтверждение приема не требуется: данные передаются вне зависимости от управляющих сигналов. Данное свойство отменит настройки контроля подтверждения приема и контроля потока.

2. Занят/готов.


В момент подачи питания на сканер уровень сигнала RTS устанавливается в ON и остается таким в момент передачи данных от ПК. ПК поддерживает уровень сигнала CTS сканера в ON в момент готовности приема данных от сканера. Пока уровень сигнала в ON, сканер может передавать данные в ПК. Если в течение установленного периода времени уровень сигнала CTS находится не в ON, сканер отменит передачу данных и выдаст звуковой сигнал об ошибке. При полудуплексном режиме передачи данных сканер сбросит уровень сигнала RTS в OFF.

3. Модемный режим.

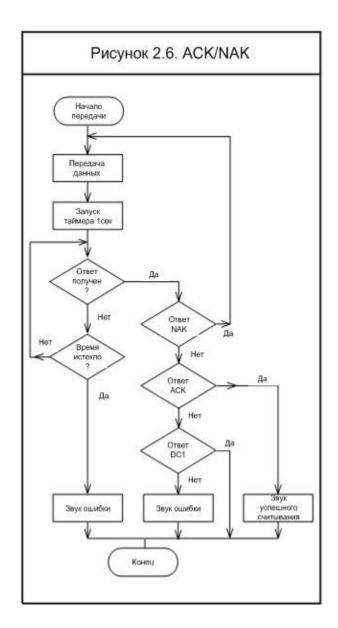
В момент подачи питания на сканер уровень сигнала RTS устанавливается в OFF. Для передачи данных в ПК уровень сигнала RTS устанавливается в ON. Ответом от ПК будет установка уровня сигнала CTS в ON. Пока сигнал остается на этом уровне, сканер может передавать данные в ПК.

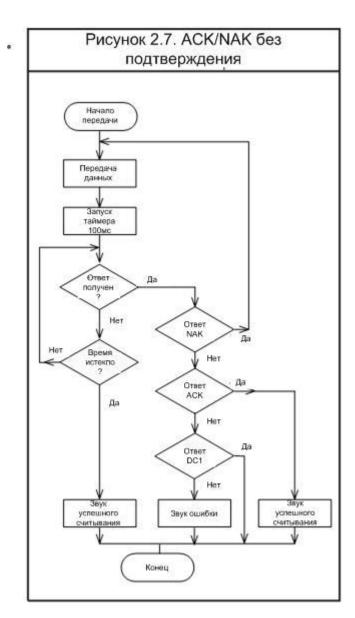
По окончании передачи данных сканер устанавливает уровень сигнала RTS в OFF. В ответ на это ПК устанавливает уровень сигнала CTS в OFF. Если уровень сигнала RTS в ON, и если в течение установленного периода времени уровень сигнала CTS находится не в ON, сканер отменит передачу данных и выдаст звуковой сигнал об ошибке.

4. XON/XOFF.

Сканер передает данные до тех пор, пока от ПК не получен символ остановки XOFF (шестнадцатеричная — 13, ASCII — DC3). В случае получения сканером от ПК символа возобновления XON (шестнадцатеричная — 11, ASCII — DC1) передача данных возобновляется.

5. ACK/NAK


После окончания передачи данных сканер ожидает от ПК один из сигналов:


АСК (шестнадцатеричная -06): сканер заканчивает передачу данных и выдает сигнал успешного считывания.

NAK (шестнадцатеричная – 15): сканер еще раз передает данные.

DC1 (шестнадцатеричная -11): сканер заканчивает передачу данных без какой-либо индикации.

Нет ответа: если в течение одной секунды от ПК не получено ответа, сканер отменяет передачу данных и выдает звуковой сигнал об ошибке.

6. АСК/NАК без подтверждения

Основное отличие данного режима от предыдущего состоит в том, что если в течение 100 мс после посылки данных от ПК не получен ответ, считается, что данные успешно переданы.

АСК (шестнадцатеричная -06): сканер заканчивает передачу данных и выдает сигнал успешного считывания.

NAK (шестнадцатеричная -15): сканер еще раз передает данные.

DC1 (шестнадцатеричная – 11): сканер заканчивает передачу данных без какой-либо индикации.

Нет ответа: если в течение 100 мс от ПК не получено ответа, сканер отменяет передачу данных и выдает сигнал успешного считывания.

	SET	
Без подтверждения	P0	
Занят/готов	P1	
Модемный	P2	
XON/XOFF	ZG	
ACK/NAK	P3	
ACK/NAK без подтверждения	P4	
Период тайм-аута неопределен	10	
Период тайм-аута 100 мс	I1	
Период тайм-аута 200 мс	12	
Период тайм-аута 400 мс	13	
	END	

2.1.4 Межсимвольная задержка (Intercharcter delay)

Данное свойство позволяет задать время задержки между передаваемыми символами.

	SET	
Без задержки	КА	
Задержка 20 мс	KB	
Задержка 50 мс	KC	
Задержка 100 мс	KD	
	END	

2.2 Клавиатурный интерфейс и USB

В данном параграфе описываются настройки свойств сканеров с клавиатурным или USB интерфейсом. Могут быть настроены следующие параметры:

- язык клавиатуры;
- некоторые дополнительные параметры;
- межсимвольная задержка.

Поскольку указанные выше параметры взаимозависимы, то изменять их стоит в указанном порядке.

Чтобы узнать, какие раскладки и языки поддерживаются на данный момент, свяжитесь с поставшиком.

Режимы работы

С клавиатурой (with keyboard):

данный режим следует использовать в случае, когда сканер подключен в разрыв клавиатуры.

Без клавиатуры (without keyboard):

данный режим следует использовать в случае, когда сканер подключен напрямую в клавиатурный порт ПК. Иногда данный режим необходимо включить в случае, когда используется клавиатура с USB интерфейсом. Также данный режим следует попробовать включить в случае, когда ПК сигнализирует об ошибке клавиатуры или когда успешно считанные данные не отображаются на ПК. Включение данного свойства требует перезагрузки ПК. Не включайте данное свойство, если клавиатура подключена в разрыв.

Свойство без клавиатуры поддерживается только РС/АТ клавиатурами.

	SET	
С клавиатурой	KM	
Без клавиатуры	KL	
	END	

2.2.1 Раскладка клавиатуры

Клавиатуры отличаются в зависимости от страны или языка (например, клавиатуры QWERTY и AZERTY). Выбирать следует ту раскладку, которая настроена на используемом ПК.

Поддерживаемые языки зависят от модели сканера и версии прошивки. Чтобы узнать, какие раскладки и языки поддерживаются на данный момент, свяжитесь с поставщиком.

	SET	
us	KE	
UK	KV	
German	KG	
French	KI	
French Macintosh	ВАО	
Italian	OW	
Spanish	KJ	
Portuguese	PH	
Swiss (French)	PL	
	END	

	SET	
Swiss (German)	PK	
Dutch	PI	
Belgian	PJ	
Swedish	PD	
Finnish	PG	
Danish	KK	
Norwegian	PE	
Japanese	PM	
Czech	WF	
	END	

2.2.2 Дополнительные параметры

В данном параграфе представлены некоторые дополнительные параметры.

Do not use numpad: при передаче числовых данных сканер эмулирует ввод цифр с буквенной клавиатуры.

Use numpad: при передаче числовых данных сканер эмулирует ввод цифр с цифровой клавиатуры. NUMLOCK при этом должен быть обязательно включен.

Auto NumLock mode: при выборе данного свойства сканер автоматически выставляет NUMLOCK в нужное значение.

No CAPSLOCK mode: данный свойство отключает CAPSLOCK.

CAPSLOCK mode: данный свойство включает CAPSLOCK.

Auto CAPSLOCK mode: при выборе данного свойства данные отображаются корректно вне зависимости от значения CAPSLOCK.

	SET	
Do not use numpad	RN	
Use numpad	RM	
Auto numlock mode	/A	
No CAPSLOCK mode	5Q	
CAPSLOCK mode	8A	
Auto CAPSLOCK mode	2U	
	END	

2.2.3 Межсимвольная задержка (для клавиатурного интерфейса и USB)

Данное свойство позволяет задать время задержки между передаваемыми символами. Например, если скорость передачи данных очень высокая, ПК не успевает обработать все данные. При этом часть данных может быть утеряна. Выберите такое значение, при котором не происходит потери данных. Значение по умолчанию и реальное время задержки зависят от типа ПК и выбранного языка.

	SET	
Без задержки	LA	
Delay = 1	LB	
Delay = 2	LC	
Delay = 3	LD	
Delay = 4	LE	
Delay = 5	LF	
Delay = 6	LG	
Delay = 7	LH	
Delay = 8	LI	
Delay = 9	LJ	
Delay = 10	LK	
	END	

2.3 Беспроводное подключение

Данный параграф предназначен для настройки беспроводного соединения сканера с подставкой или с другими беспроводными адаптерами. Представленные свойства позволяют уменьшить потребление электроэнергии и продлить срок службы сканера, а также обеспечить безопасную передачу данных.

Подключение по Bluetooth (по умолчанию):

по умолчанию сканер настроен на подключение к подставке. Следует просто считать 12-тизначный ШК с нижней поверхности подставки. Произойдет подключение к подставке и сканер автоматически настроит PIN-код, аутентификацию и шифрование.

Подключение по IEEE 802.15.4 (по умолчанию):

по умолчанию сканер настроен на подключение к подставке. Следует просто считать 10-тизначный ШК с нижней поверхности подставки. Произойдет подключение к подставке и сканер автоматически настроит PIN-код, аутентификацию и шифрование. При использовании IEEE 802.15.4 соединение существует только непосредственно в момент передачи данных. Поэтому свойства

Автоматическое отключение и **Автоматическое подключение** не поддерживаются.

Подключение через подставку RS-232:

если подставка подключается к ПК через RS-232, то параметры связи, такие как скорость передачи данных, биты данных и биты четности, могут быть настроены посредством считывания настроечных ШК сканером. Настроечные ШК приведены в соответствующих параграфах.

Подключение через подставку USB:

если подставка подключается к ПК через USB, следует установить драйвер для USB подставки (http://www.opticon.com). Драйвер создает виртуальный СОМ порт.

Список ОС, поддерживаемых драйвером, следует уточнять у поставщика.

Подключение через беспроводной адаптер:

при использовании беспроводных адаптеров сторонних производителей адрес устройства, PINкод и параметры безопасной передачи данных нужно будет настроить вручную. Обратитесь к руководству пользователя адаптером. Драйвер адаптера создает виртуальный СОМ порт.

Эмуляция клавиатуры:

если необходима эмуляция клавиатуры, следует использовать программу Tscan (разработка Opticon). Программа преобразует данные из COM порта так, как будто они были переданы с клавиатуры. По вопросам получения программы свяжитесь с поставшиком.

Включение автоматического подключения в полставке:

после считывания ШК с нижней поверхности подставки сканер сразу пытается установить связь с подставкой.

Выключение автоматического подключения к полставке:

после считывания ШК с нижней поверхности подставки связь с подставкой нужно устанавливать вручную.

Подключение к другим Bluetooth-устройствам:

для подключения к другим Bluetooth-устройствам необходимо считать ряд настроечных ШК. Настройку следует производить в указанном порядке:

- настроить Bluetooth адрес устройства (обязательно):
- настроить параметры безопасной передачи (по желанию);
- считать ШК для подключения (обязательно).

Настройки Bluetooth:

доступны следующие параметры:

- установка связи (обязательно), выбор между автоматическим и ручным способами подключения;
- выбор адреса устройства (обязательно);
- выбор метода шифрования (по желанию);
- установка параметров экономии энергии;
- установка параметров сохранения данных.

Настройки IEEE 802.15.4:

доступны следующие параметры:

- установка связи (обязательно);
- установка параметров ручного подключения (по желанию);
- установка параметров экономии энергии (по желанию);
- установка параметров сохранения данных (по желанию).

2.3.1 Bluetooth адрес

Чтобы связать сканер с Bluetooth адаптером, сканеру необходимо указать Bluetooth адрес этого адаптера.

Адрес адаптера должен быть указан на нем самом. Зачастую он указан на товарной этикетке и представляет собой 12-тизначное число или 6-тизначное шестнадцатеричное число.

Чтобы подключить сканер, выполните следующие шаги:

- шаг 1 получите MAC адрес адаптера, к которому нужно подключить сканер;
- шаг 2 настройте сканер на подключение к ПК;
- шаг 3 укажите сканеру МАС адрес адаптера;
- шаг 4 установите связь с адаптером.

Пример подключения.

Шаг 1. От Bluetooth адаптера получены

следующие данные:

Dongle make/type: MSI MS6967 Bluetooth Address: 00 04 12 34 AF 56 Secure Connection: Not Required.

Шаг 2. Считайте следующие ШК:

<SET>

<Подключиться к ПК>

Шаг 3.

Заметка: при считывании одного и того же ШК подряд следует выдерживать паузу длительностью 1 секунду.

- Из данной главы считайте ШК <Hастроить Bluetooth адрес>.
- Из главы Прямой ввод цифр считайте ШК <0>

подождите секунду, опять считайте

подождите секунду, опять считайте <0>

<4> <1> <2> <3> <4>

- Из главы Прямой ввод символов считайте ШК <A> <F>
- Из главы Прямой ввод цифр считайте ШК <5> <6>
- Из данной главы считайте ШК <Закончить настройку Bluetooth адреса> <END>

Шаг 4. Из данной главы считайте ШК <Manually connect>

Если Bluetooth адрес уже настроен, то можно вручную установить или разорвать связь, считав ШК **Manually connect** и **Manually Disconnect**, соответственно.

	SET	
Настроить Bluetooth адрес	BDAS	
Закончить настройку Bluetooth адреса	BDAE	
Выключение автоматического подключения	DIAU	
Включение автоматического подключения	ENAU	
Подключиться к ПК	CNPC	
Подключиться к подставке	CNCR	
Подключиться к подставке (USB-HID)	CNC2	
	END	

Manually disconnect	+-DISC-+	
Manually connect	+-CONN-+	
Сделать видимым и доступным для подключения	+-DSCO-+	

2.3.2 Безопасность соединения

Чтобы обеспечить дополнительную безопасность соединения, можно включить специальную настройку. Таким образом, при попытке подключения к устройству необходимо будет ввести PIN-код данного устройства.

«Безопасное» подключение

При необходимости защитить подключение следует выполнить шаги:

- считайте ШК Включить аутентификацию;
- считайте ШК Задать PIN-код и введите PIN-код. Длина PIN-кода может быть от 1 до 16 символов. Можно использовать любую буквенно-цифровую комбинацию. Ввод Pin-кода осуществляется считыванием «цифровых» ШК из главы Свойства формата ШК;
- включите аутентификацию на ПК;
- если необходимо использовать шифрование, считайте ШК Включить шифрование.

Если необходимости в защите подключения нет, можно использовать обычный режим:

- считайте ШК Выключить аутентификацию;
- отключите аутентификацию на ПК.

	SET	
Задать PIN-код	PINS	
Не использовать PIN-код	PINE	
Запрашивать аутентификацию при создании новой пары)	AUTO	
Выключить аутентификацию	AUTD	
Включить аутентификацию	AUTE	
Выключить шифрование	ENCD	
Включить шифрование	ENCE	
	END	

2.3.3 Настройки кнопки сканирования

Время удержания (для подключения):

укажите время, в течение которого нужно держать кнопку сканирования для осуществления попытки подключения.

Обнаружение и подключение:

при удержании кнопки сканирования в течение заданного периода времени сканер может осуществить подключение или войти в режим ожидания входящего подключения. В период ожидания сканер становится «видимым» для других Bluetooth устройств.

	SET	
Выключена	PC00	
1 second	PC01	
2 seconds	PC02	
3 seconds	PC03	
4 seconds	PC04	
5 seconds	PC05	
6 seconds	PC06	
7 seconds	PC07	
8 seconds	PC08	
9 seconds	PC09	
	END	

	SET	
Время удержания	ввс	
Обнаружение и подключение	BBD	
	END	

2.3.4 Время удержания (для разрыва связи)

укажите время, в течение которого нужно держать кнопку сканирования для осуществления разрыва связи.

	SET	
Отключено	PD00	
1 second	PD01	
2 seconds	PD02	
3 seconds	PD03	
4 seconds	PD04	
5 seconds	PD05	
6 seconds	PD06	
7 seconds	PD07	
8 seconds	PD08	
9 seconds	PD09	
	END	

2.3.5 Автоматический разрыв связи

укажите время, по истечении которого в случае простоя сканера произойдет разрыв связи. Данное свойство позволяет экономить электроэнергию.

	SET	
Отключено	AD00	
10 minutes	AD01	
20 minutes	AD02	
30 minutes	AD03	
40 minutes	AD04	
50 minutes	AD05	
60 minutes	AD06	
	END	

2.3.6 Автоматическое восстановление подключения

Если связь прервана вследствие выхода из зоны покрытия Bluetooth или Bluetooth устройство не доступно, сканер будет пытаться восстановить соединение в течение указанного периода времени.

По окончании указанного времени попытки прекращаются. Сканер не будет пытаться восстановить соединение, если был считан ШК ручного разрыва связи или после автоматического отключения.

	SET	
Отключено	CA00	
1 minute	CA01	
2 minutes	CA02	
3 minutes	CA03	
4 minutes	CA04	
5 minutes	CA05	
6 minutes	CA06	
7 minutes	CA07	
8 minutes	CA08	
9 minutes	CA09	
	END	

2.3.7 Сохранение энергии при использовании беспроводной связи

С целью снижения потребления энергии настраивается уровень активности сканера. По умолчанию сканер «активен», что означает, что сканер постоянно проверяет наличие подключения. При установке интервала времени, по истечении которого происходит проверка подключения, происходит снижение уровня активности сканера.

Автоматический разрыв связи

Потребление энергии может быть также снижено, если использовать автоматический разрыв связи, описанный в предыдущих параграфах.

Сохранение энергии при использовании IEEE 802.15.4

Сканеры, использующие стандарт связи IEEE 802.15.4, вместо изменения уровня активности изменяют выходную мощность антенны.

	SET	
Level 0	LV00	
Level 1 300 slots, 187.5ms	LV01	
Level 2 500 slots, 312.5ms	LV02	
Level 3 700 slots, 437.0ms	LV03	
Level 4 900 slots, 562.5ms	LV04	
Level 5 1100 slots, 687.5ms	LV05	
Level 6 1300 slots, 812.5ms	LV06	
Level 7 1500 slots, 937.5ms	LV07	
	END	

2.3.8 Сохранение данных

Свойство сохранения данных может быть использовано для временного сохранения данных ШК в памяти сканера, если произошел обрыв связи. Как только связь вновь установлена, данные из памяти сканера передаются на ПК и память сканера очишается.

Данные хранятся в оперативной памяти сканера. В случае разрядки или выемки аккумулятора из сканера данные будут утеряны.

Связь автоматически разрывается, когда:

- сканер находится вне зоны покрытия (находится далеко от подставки);
- на подставку перестает подаваться питание.

Выключить сохранение данных:

если связь разорвана, автоматического сохранения данных не происходит. Включить сохранение можно считав ШК **Start/continue memorizing**.

Включить сохранение данных:

если связь разорвана, происходит автоматическое сохранения данных.

Сохранять данные при потере связи:

если связь разорвана, происходит автоматическое сохранения данных. Сохранение данных отключается, если считать ШК +-DISC-+ или сменился адрес беспроводного устройства.

Всегда сохранять данные при отсутствии связи:

данные всегда сохраняются, если связь отсутствует (разорвана).

Управляющие ШК:

для настройки следующих свойств не нужно считывать настроечные ШК **SET** и **END**. Данные свойства предназначены для ручного контроля сохранения данных.

Начать/продолжить сохранение:

начать сохранение данных. Если в памяти уже содержатся данные, то новые данные будут добавляться к ним.

Закончить/прервать сохранение:

закончить добавление данных. Продолжить сохранение можно считав ШК **Start/continue memorizing**.

Очистить память:

происходит очистка памяти.

Передать сохраненные данные:

если связь установлена, все данные будут переданы на ПК.

	SET	
Выключить сохранение данных	DTMD	
Включить сохранение данных	DTME	
Сохранять данные при потере связи	вмо	
Всегда сохранять данные при отсутствии связи	ВМ1	
	END	

Очистить память	+-MCLR-+	
Начать/продолжить сохранение	+-MSTR-+	
Закончить/прервать сохранение	+-MSTP-+	
Передать сохраненные данные	+-MXMT-+	

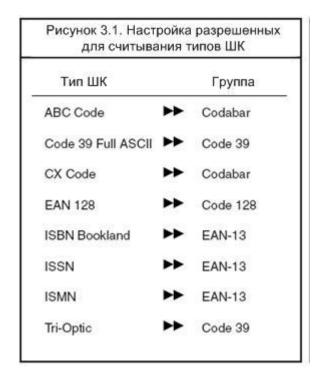
3. Настройки ШК

В данной главе приведены настроечные ШК, с помощью которых устанавливаются:

- типы ШК, разрешенных для считывания;
- допустимая длина ШК;
- специальные свойства ШК.

3.1 Установка разрешенных для считывания 3.1.1 типов IIIК

Данные настройки никак не сказываются на считывании настроечных ШК. Разрешенным для считывания может быть как лишь один тип ШК, так и несколько типов.


Настоятельно рекомендуется разрешать считывать только используемые в процессе типы ШК.

Получаемые при этом преимущества:

- считывание происходит быстрее;
- исключается считывание нежелательных ШК;
- снижается вероятность ошибок считывания.

Некоторые типы ШК являются интерпретацией или особым видом других известных типов ШК. Взаимосвязи указаны ниже.

Пример: чтобы разрешить считывание ШК типа Italian Pharmaceutical, нужно разрешить считывание ШК типа Code 39 (Enable Code 39), далее выбрать Italian Pharmaceutical из раздела Options for Code 39.

3.1.1 Разрешить считывать один тип

Данное свойство позволяет сканеру считывать лишь один тип ШК. Если считать ШК **Code 39 only**, другие типы ШК будет невозможно считать.

Пример: чтобы разрешить считывание ШК только типа Code 39, считайте настроечные ШК в указанной на рисунке последовательности.

Пример: чтобы разрешить считывание ШК только типа EAN 128 (особый вид Code 128), считайте настроечные ШК в указанной на рисунке последовательности.

	SET	
All codes excl. add-on	A0	
Only all UPC and EAN codes	J0	
UPC only	J1	
UPC + 2 only	J2	
UPC + 5 only	J3	
EAN only	J4	
EAN + 2 only	J5	
EAN + 5 only	J6	
Code 39 only	A2	
Tri-Optic only	JD	
Codabar only	A 3	
Industrial 2of5 only	J7	
Interleaved 2of5 only	J8	
	END	

	SET	
S-Code only	RA	
Matrix 2of5 only	AB	
Chinese Post Matrix 2of5 only	JE	
Korean Postal Authority code only	JL	
IATA only	A4	
MSI/Plessey only	A7	
Telepen only	A9	
UK/Plessey only	A1	
Code 128 only	A6	
Code 93 only	A 5	
Code 11 only	BLB	
RSS-14 only	J9	
RSS-limited only	JJ	
	END	

	SET	
RSS-expanded only	JK	
DataMatrix ECC000 - 140 only	BG2	
DataMatrix ECC200 only	BC0	
Aztec only	BC5	
Aztec runes only	BF4	
QR Code only	BC1	
Micro QR Code only	D38	
Maxicode only	BC2	
PDF417 only	BC3	
MicroPDF417 only	BC4	
Enable all 1D codes only	BCA	
Enable all 2D codes only	всв	
	END	

3.1.2 Разрешить считывать множество типов

Данное свойство позволяет сканеру считывать множество типов ШК.

Пример: чтобы разрешить считывать ШК типа Code 39 и Code128, считайте ШК Code 39 only и Enable Code 128. Также возможна другая схема: Disable All, Enable Code 39 и Enable Code 128.

Пример: чтобы разрешить считывание ШК типа Codabar в дополнение к разрешенным ранее типам, считайте ШК **Enable Codabar**.

	SET	
All codes excl. add-on	A0	
Enable UPC	R1	
Enable UPC + 2	R2	
Enable UPC + 5	R3	
Enable EAN	R4	
Enable EAN + 2	R5	
Enable EAN + 5	R6	
Enable Code 39	B2	
Enable Tri-Optic	JZ	
Enable Codabar	В3	
Enable Industrial 2of5	R7	
Enable Interleaved 2of5	R8	
Enable S-Code	R9	
	END	

	SET	
Enable Matrix 2of5	ВВ	
Enable Chinese Post Matrix 2of5	JS	
Enable Korean Postal Authority code	WH	
Enable IATA	В4	
Enable MSI/Plessey	В7	
Enable Telepen	В9	
Enable UK/Plessey	B1	
Enable Code 128	В6	
Enable Code 93	B5	
Enable Code 11	BLC	
Enable RSS-14	JX	
Enable RSS-limited	JY	
Enable RSS-expanded	DR	
	END	

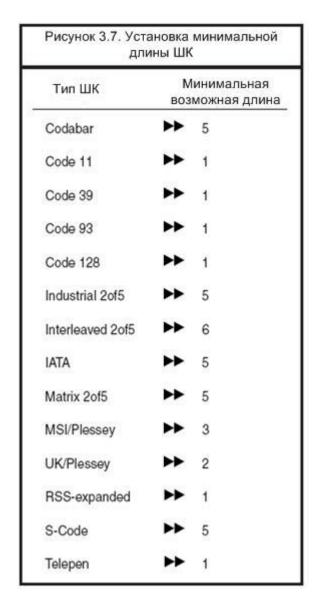
	SET	
Enable DataMatrix ECC000 - 140	BG0	
Enable DataMatrix ECC200	всс	
Enable Aztec	всн	
Enable Aztec runes	BF2	
Enable QR Code	BCD	
Enable Micro QR Code	D2U	
Enable Maxicode	BCE	
Enable PDF417	BCF	
Enable MicroPDF417	BCG	
Enable all 1D codes	ВСМ	
Enable all 2D codes	BCN	
Disable all	В0	
	END	

3.2 Установка допустимой длины ШК

Если заранее известна длина ШК, с которыми предстоит работать, то следует настроить сканер на считывание ШК именно такой длины. Можно задать до двух различных допустимых длин ШК. Данное свойство используется для контроля длины считываемых ШК и запрета считывания ШК с длиной, отличной от заданной. Данное свойство позволяет предотвратить неверное считывание таких типов ШК, например, Interleaved 2 of 5, у которых низкий уровень защиты от частичного считывания. Проверка качается только длины данных самого ШК, на символ начала, стоповый знак или контрольный символ проверка не распространяется. Данная настройка не распространяется на ШК фиксированной длины (например, EAN-13). Для 2D ШК типа PDF417 и Data Matrix установка длины также не распространяется.

Доступны следующие свойства:

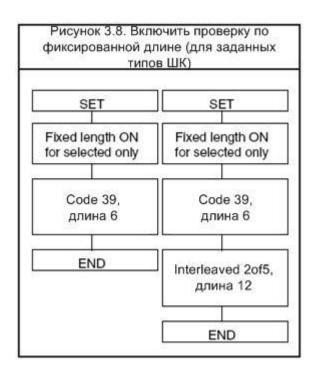
Отключить фиксированную длину для всех типов ШК – проверка длины отключена (для всех типов ШК).


Включить фиксированную длину для всех типов ШК – проверка длины включена.

Можно задать два значения длины. Для этого нужно считать ШК <SET>, далее <Fixed length ON all codes>, затем ШК с нужным значением длины, затем ШК с другим нужным значением длины и <END>.

Задать можно фиксированную длину или минимальное и максимальное значения длины. Возможно комбинирование свойств. Проверка производится по следующему правилу:

- если ШК проверен по фиксированной длине, то проверки минимальному и максимальному значению проводиться не будет;
- если ШК не проверялся по фиксированной длине, он будет проверен и по минимальному, и по максимальному значениям длины.

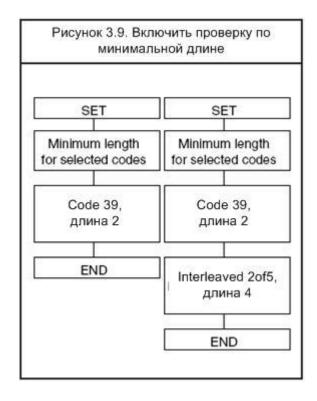

Включить фиксированную длину для указанных типов ШК:

включить проверку по фиксированной длине (для заданных типов ШК). Число задаваемых типов ШК для данного свойства зависит от конкретной модели сканера. Процедура показана ниже:

- <SET>
- < Fixed length ON for selected codes>
- <Укажите тип ШК и задайте длину>
- <END>

Пример:

на рисунке ниже показаны две процедуры. После проведения первой процедуры по длине будут проверяться ШК только типа Code 39, их длина должна быть равна 6.После проведения второй процедуры по длине будут проверяться ШК типа Code 39, их длина должна быть равна 6, и ШК типа Interleaved 2 of 5, их длина должна быть равна 12. Другие типы ШК проверяться не будут.

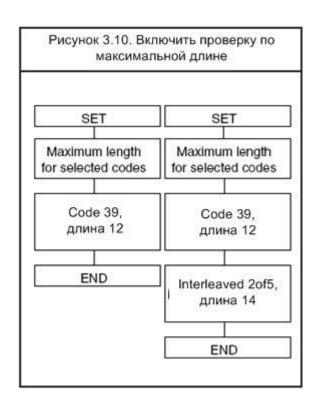

Минимальная длина для указанных типов IIIК:

данное свойство позволяет изменить минимальную длину, настроенную по умолчанию. Число задаваемых типов ШК для данного свойства зависит от конкретной модели сканера. Процедура показана ниже:

- <SET>
- <Minimum length for selected codes>
- <Укажите тип ШК и задайте длину>
- <END>

Пример:

на рисунке ниже показаны две процедуры. После проведения первой процедуры по минимальной длине будут проверяться ШК только типа Code 39, их длина должна быть не менее двух символов. После проведения второй процедуры по минимальной длине будут проверяться ШК типа Code 39, их длина должна быть не менее двух символов, и ШК типа Interleaved 2 f 5, их длина должна быть не менее четырех символов. Это также означает, что ШК типа Industrial 2 of 5, Маtrix 2 of 5 и S-Code будут проверяться по минимальной длине. Другие типы ШК проверяться не будут.


Максимальная длина для указанных типов ШК:

данное свойство позволяет изменить максимальную длину, настроенную по умолчанию. Число задаваемых типов ШК для данного свойства зависит от конкретной модели сканера. Процедура показана ниже:

- <SET>
- <Maximum length for selected codes>
- <Укажите тип ШК и задайте длину>
- <END>

Пример:

на рисунке ниже показаны две процедуры. После проведения первой процедуры по максимальной длине будут проверяться ШК только типа Code 39, их длина должна быть не более шести символов. После проведения второй процедуры по максимальной длине будут проверяться ШК типа Code 39, их длина должна быть не более двенадцати символов, и ШК типа Interleaved 2 f 5, их длина должна быть не более четырнадцати символов. Это также означает, что ШК типа Industrial 2 of 5, Matrix 2 of 5 и S-Code будут проверяться по минимальной длине. Другие типы ШК проверяться не будут.

Настройка с помощью команд

Для установки допустимой длины с помощью команд выполните процедуру, показанную ниже:

- <ESC>
- <Команда>
- <SPACE>*<CodeID>*
- <3начение длины 1>
- <3начение длины 2>
- $\langle CR \rangle$
- * если необходимо для <Команды>.

Пример:

для установки фиксированных длин 8, 10 и 12 для всех типов ШК нужно подать следующую команду:

• <ESC>H1081012<CR>

Для установки минимальной длины 2 для ШК типа Code 39 нужно подать следующую команду:

• <ESC>HL V02<CR>

Для установки максимальной длины 12 и 14 для ШК типа Code 39 и Interleaved 2 of 5 соответственно, нужно подать следующую команду:

• <ESC>HM V12 N14<CR>

	SET	
Отключить фиксированную длину для всех типов ШК	НО	
Включить фиксированную длину для всех типов ШК	H1	
Включить фиксированную длину для указанных типов ШК	НК	
Миниммальная длина для указанных типов ШК	HL	
Максимальная длина для указанных типов ШК	НМ	
	END	

3.3 Настройка специальных свойств ШК

В данном параграфе описаны настройки специальных свойств ШК:

- разрешение и запрет на считывание интерпретаций и особых видов других известных типов ШК, например EAN-128;
- проверка корректности данных ШК, в частности, проверка контрольного символа. Значение контрольного символа вычисляется по данным ШК. Обычно это последний символ в данных ШК:
- предварительное редактирование данных ШК, например, удаление контрольного символа и/или символа начала или стопового знака.

Наиболее часто используемые свойства описаны ниже:

Check CD (проверять контрольный символ):

данное свойство включает проверку контрольного символа. Если вычисленный контрольный символ не совпадает с контрольным символом ШК, такой ШК считан не будет. Включение данного свойства позволяет исключить считывание некорректных ШК.

Not check CD (без проверки контрольного символа):

данное свойство отключает проверку контрольного символа. Данное свойство следует использовать, когда ШК не содержит контрольного символа или он неверен.

Transmit CD (передавать проверочный символ):

данное свойство включает передачу контрольного символа. Если проверка контрольного символа отключена, то сканер не может его отличить от символа данных. Поэтому данные будут переданы полностью, включая символ, который может быть контрольным символом.

Not transmit CD (не передавать проверочный символ):

данное свойство отключает передачу контрольного символа. Если проверка контрольного символа отключена, то сканер не может его отличить от символа данных. Поэтому данные будут переданы полностью, исключая символ, который может быть контрольным символом..

Transmit ST/SP (передавать символ начала и стоповый знак):

данное свойство включает передачу символа начала и стопового знака.

Not transmit ST/SP (не передавать символ начала и стоповый знак):

данное свойство отключает передачу символа начала и стопового знака.

На рисунке 3.11 приведены данные ШК, получаемые в зависимости от установленных свойств.

Следует учесть, что цифра 6 не является корректным контрольным символом для указанного ШК.

	ок 3.11. Наст ических свой	N. 400 (100 (100 (100 (100 (100 (100 (100
	Transmit CD	Not transmit CD
Transmit ST/SP	*123456*	12345
Not transmit ST/SP	123456	12345

3.3.1 Свойства UPC-А

ШК типа UPC-А имеют фиксированную длину 11, контрольный символ и непечатаемые символ начала и стоповый знак. Символы данных — цифры от 0 до 9.

Для обеспечения совместимости с ШК типа EAN-13 можно передавать лидирующий ноль, который вместе с данными ШК и контрольным символом формируют 13-значный ШК. Формат ШК показан на рисунке.

Рисун	юк 3.12. Свойства U	JPC-A
	UPC-A	
Лидирую щий ноль	Данные (11 символов)	Контроль ный символ

UPC-A add-on 2/add-on 5:

ШК типа UPC-А могут быть дополнены добавочными 2-х или 5-тизначными ШК типа UPC-А. Формат ШК указан на рисунке.

Свойства UPC-A:

- запрет или передача лидирующего нуля;
- запрет или передача контрольного символа.

Рису	нок 3.13. Сво	йства UPC-/	Д
	UPC-A +2	2, +5	
Лидирую щий ноль	Данные (11 символов)	Контроль ный символ	add-on 2 or 5

	SET	
UPC-A, без лид. нуля, передавать проверочный символ	E3	
UPC-A, без лид. нуля, не передавать проверочный символ	E5	
UPC-A, лид. ноль, передавать проверочный символ	E2	
UPC-A, лид. ноль, не передавать проверочный символ	E4	
	END	

3.3.2 Свойства UPC-Е

ШК типа UPC-Е имеют фиксированную длину 6, контрольный символ и непечатаемые символ начала и стоповый знак. Символы данных — цифры от 0 до 9.

Для обеспечения совместимости с ШК типа EAN-8 можно передавать лидирующий ноль, который вместе с данными ШК и контрольным символом формируют 8-значный ШК. Формат ШК показан на рисунке.

Of C-E auu-on 2/auu-on 3/	UPC-E	add-on	2/add-on	5:
---------------------------	--------------	--------	----------	----

ШК типа UPC-Е могут быть дополнены добавочными 2-х или 5-тизначными ШК типа UPC-Е. Формат ШК указан на рисунке.

Существует две версии ШК типа UPC-E: E0 и E1. UPC-E версии E0 всегда начинается с нуля, UPC-E версии E1 всегда начинается с единицы. Изменения применяются для обеих версий. Поддержка версии E1 зависит от модели сканера.

Свойства UPC-Е:

- запрет или передача лидирующего нуля;
- запрет или передача контрольного символа;
- передача UPC-E в формате UPC-A.

Transmit UPC-E as UPC-A:

при включенном свойстве данные ШК типа UPC-E передаются в формате UPC-A.

Рисуно	к 3.14. Свойства l	JPC-E
	UPC-E	
Лидирующ ий символ (0 или 1)	Данные (6 символов)	Контроль ный символ

Рисун	ок 3.15. Сво	йства UPC	E
	UPC-E +2	, +5	
Лидирующ ий символ (0 или 1)	Данные (6 символов)	Контроль ный символ	add-on 2 or 5

	SET	
UPC-E, без лид. нуля, передавать проверочный символ	E7	
UPC-E, без лид. нуля, не передавать проверочный символ	E9	
UPC-E, лид. ноль, передавать проверочный символ	E6	
UPC-E, лид. ноль, не передавать проверочный символ	E8	
Передавать UPC-E	6Q	
Передавать UPC-E в формате UPC-A	6P	
	END	

3.3.3 Свойства EAN-13 и EAN-8

EAN-13:

ШК типа EAN-13 имеют фиксированную длину 12, контрольный символ и непечатаемые символ начала и стоповый знак. Символы данных — цифры от 0 до 9.

Данные ШК могут быть интерпретированы в формате ISBN, ISSN и ISMN. Формат ШК указан на рисунке.

EAN-13 add-on 2/add-on 5:

ШК типа EAN-13 могут быть дополнены добавочными 2-х или 5-тизначными ШК. Формат ШК указан на рисунке.

EAN-8:

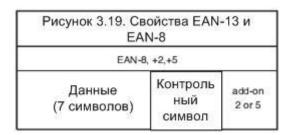
ШК типа EAN-8 имеют фиксированную длину 7, контрольный символ и непечатаемые символ начала и стоповый знак. Символы данных — цифры от 0 до 9. Формат ШК указан на рисунке

EAN-8 add-on 2/add-on 5:

ШК типа EAN-8 могут быть дополнены добавочными 2-х или 5-тизначными ШК. Формат ШК указан на рисунке.

Свойства EAN:

- запрет или передача контрольного символа;
- отключение и включение интерпретации к типам ISBN, ISSN и ISMN.


Преобразование к типам ISBN, ISSN и ISMN (Enable ISBN, ISSN, ISMN translation (if possible))

Если данное свойство включено, то сначала проверяется корректность формата ШК, далее данные ШК передаются в виде 10-тизначного ШК типа ISBN, 8-мизначного ШК типа ISSN. В случае передачи данных в виде ШК типа ISMN, вначале данных передается символ М, далее идут 9 символов данных. Поддержка данных свойств зависит от модели сканера.

Рисунок 3.16. Свойства EAN-8	EAN-13 и
EAN-13	
Данные (12 символов)	Контроль ный символ

Рисунок 3.17. Св ЕАІ		13 и
EAN-13	3, +2,+5	5
Данные (12 символов)	Контроль ный символ	add-on 2 or 5

Рисунок 3.18. Свойств EAN-8	a EAN-13 и
EAN-8	
Данные (7 символов)	Контроль ный символ

	SET	
EAN-13 не передавать проверочный символ	6J	
EAN-13 передавать проверочный символ	6K	
EAN-8 не передавать проверочный символ	6H	
EAN-8 передавать проверочный символ	61	
Отключить преобразование в ISBN	IB	
Включить преобразование в ISBN	IA	
Включить преобразование в ISBN (если возможно)	IK	
Отлючить преобразование в ISSN	HN	
Включить преобразование в ISSN	НО	
Включить преобразование в ISSN (если возможно)	4V	
Отключить преобразование в ISMN	Ю	
Включить преобразование в ISMN	IΡ	
Включить преобразование в ISMN (если возможно)	Q	
	END	

3.3.4 Свойства Code 39 и Italian Pharmaceutical

Code 39

ШК типа Code 39 имеют переменную длину, контрольный символ (опционально) и печатаемые символ начала и стоповый знак. Поддерживаемые символы данных:

- цифры от 0 до 9;
- заглавные буквы от А до Z;
- символы . \$ / + % пробел;
- * символ начала и стоповый знак.

Контрольная сумма рассчитывается исходя из числовых данных ШК по модулю 43. В полном режиме ASCII поддерживаются все 128 символов ASCII. Это достигается путем комбинирования символов +, %, \$

или / с одним из буквенных символов (от A до Z). Формат ШК указан на рисунке.

Italian Pharmaceutical

В данном режиме данные ШК типа Code 39 преобразовываются в формат Italian Pharmaceutical. Данный формат имеет фиксированную длину, данные содержать 8 цифровых символов и один обязательный контрольный символ. Также можно передать лидирующий символ A.

Свойства Code 39:

- включение полного режима ASCII;
- включение Italian Pharmaceutical;
- включить проверку контрольного символа;
- запрет или передача контрольного символа;
- запрет или передача символа начала и стопового знака:
- включение лидирующего символа A для Italian Pharmaceutical;
- выбор минимального числа символов данных.

Normal Code 39:

в данном режиме данные передаются без последующего преобразования.

Full ASCII Code 39:

в данном режиме данные передаются в полном режиме ASCII.

Full ASCII Code 39 if possible:

в данном режиме данные передаются в полном режиме ASCII. Недопустимые комбинации не преобразуются и передаются как есть.

Italian Pharmaceutical only:

в данном режиме данные ШК преобразовываются в формат Italian Pharmaceutical. Если данные не удовлетворяют формату Italian Pharmaceutical, ШК игнорируется.

Italian Pharmaceutical if possible:

в данном режиме данные ШК преобразовываются в формат Italian Pharmaceutical. Если данные не удовлетворяют формату Italian Pharmaceutical, то они передаются в формате Normal или full ASCII Code 39.

Concatenation (конкатенация):

если данные ШК начинаются с пробела, то при считывании ШК данные помещаются в буфер сканера без пробела. Как только будет считан ШК типа Code 39 без пробела в начале данных, данные обоих ШК будут объединены и переданы на ПК, а буфер будет очищен. Если будет считан ШК, отличный от типа Code 39, то будут переданы только его данные, а буфер будет очищен. Размер буфера зависит от модели сканера.

Рисун	ок 3.20, Свой It.Pha		39 и
	Code	39	
Символ начала	Данные (от 0 и более символов)	Контроль ный символ	Стопо вый знак

Рису	нок 3.	21. Свойств It.Pharm	a Code	39 и
	Ita	alian Pharmaceu	rtical	100
Символ начала	Лид. А	Данные (8 символов)	Контр. символ	Стопо вый знак

	SET	
Normal Code 39	D5	
Full ASCII Code 39	D4	
Full ASCII Code 39 if possible	+K	
It. Pharmaceutical only	D6	
It. Pharmaceutical if possible	D7	
Без проверки контрольного символа	C1	
Проверять контрольный символ	C0	
Не передавать проверочный символ	D8	
Передавать проверочный символ	D9	
Не передавать символ начала и стоповый знак	D1	
Передавать символ начала и стоповый знак	D0	
Не передавать лид. А для lt. Pharm.	DA	
Передавать лид. А . для lt. Pharm.	DB	
	END	

	SET	
Minimum 3 digits	8D	
Minimum 1 digit	8E	
Выключить конкатенацию	+M	
Включить конкатенацию	+L	
	END	

3.3.5 Свойства Codabar

Codabar (NW7):

ШК типа Codabar (NW7) имеют переменную длину, контрольный символ (опционально) и печатаемые символ начала и стоповый знак. Поддерживаемые символы данных:

- цифры от 0 до 9;
- символы -\$: / . +
- символ начала и стоповый знак: A, B,C или D.

Контрольная сумма рассчитывается исходя из числовых данных ШК по модулю 16.

ABC-Code:

аббревиатура ABC расшифровывается как American Blood Commission (Американская комиссия по крови). Код состоит из двух ШК и декодируется однократным считыванием. Объединение данных ШК происходит в случае, когда стоповый знак первого ШК и символ начала второго ШК равны D. Оба этих символа не передаются. Формат ШК указан на рисунке.

CX-Code:

СХ-Соde состоит из двух ШК и декодируется однократным считыванием. Объединение данных ШК происходит в случае, когда стоповый знак первого ШК равен С, а символ начала второго ШК равен В. Оба этих символа не передаются. Формат ШК указан на рисунке.

Свойства Codabar:

- включить конкатенацию ABC-Code;
- включить конкатенацию CX-Code;
- включить проверку контрольного символа;
- запрет или передача контрольного символа;
- запрет или передача символа начала и стопового знака;
- выбор минимального числа символов данных;
- включить вставку пробела (CLSI).

Рису	нок 3.22. Свойс	тва Coda	bar
3	Codabar	Ų	e.
Символ начала	Данные (от 1 и более символов)	Контр. символ	Стопо вый знак

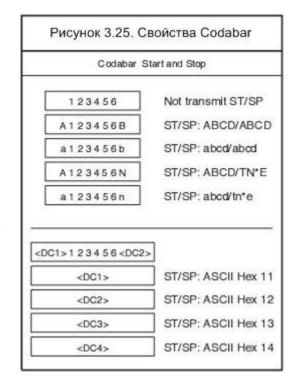
	Рисун	ок 3.23. С	войства Codab	ar	
		ABC	Code		
Симв. нач.	Данные (от 1 и более символов)	Контр. символ	Данные (от 1 и более символов)	Контр. символ	Стопо вый знак

-	Рисун	0.00000	войства Codab Code	ar	
Симв. нач.	Данные (от 1 и более символов)	Контр. символ	Данные (от 1 и более символов)	Контр. символ	Стопо вый знак

Вставка пробела:

при включенном свойстве происходит вставка пробела на позиции 2, 7, 13.

Передача символа начала и стопового знака:


данное свойство включает преобразование и передачу символа начала и стопового знака. Таким образом, если выбран режим abcd/tn*e, символ начала преобразуется в строчный (нижний регистр), например, из A, B, C или D в a, b, с или d, соответственно; стоповый знак из A, B, C или D преобразуется в t, n, * или e, соответственно. Формат ШК, в зависимости от выбранного режима, указан на рисунке.

Минимальное число символов (1, 3, 5):

данное свойство позволяет изменить минимальную длину, доступные значения:1, 3 и 5. Если число символов будет меньше установленного, то такой ШК считан не будет. Если для ШК типа Codabar установлена проверка на фиксированную длину, то она также будет выполнена.

Проверка разрывов между симолами:

данное свойство позволяет считывать ШК типа Codabar, у которых большие или нестандартные разрывы между символами. Включение проверки будет означать запрет на считывание таких ШК. Чтобы ШК считывались, нужно отключить данное свойство.

	SET	
Enable only Codabar normal mode	НА	
Enable only ABC code	H4	
Enable only CX code	H5	
Enable Codabar, ABC and CX	НЗ	
Без проверки контрольного символа	H7	
Проверять контрольный символ	Н6	
Не передавать проверочный символ	Н9	
Передавать проверочный символ	Н8	
Выключить вставку пробела	HE	
Включить вставку пробела	HD	
Не передавать символ начала и стоповый знак	F0	
ST/SP: ABCD/ABCD	F3	
ST/SP: abcd/abcd	F4	
	END	

	SET	
ST/SP: ABCD/TN*E	F1	
ST/SP: abcd/tn*e	F2	
ST/SP: <dc1><dc2><dc3><dc4>/ <dc1><dc2><dc3><dc4></dc4></dc3></dc2></dc1></dc4></dc3></dc2></dc1>	HJ	
Минимальное число символов 1	НС	
Минимальное число символов 3	НВ	
Минимальное число символов 5	HF	
Выключить проверку разрывов	н	
Включить проверку разрывов	нн	
	END	

3.3.6 Свойства 2of5 и S-Code

Code 2of5

ШК типа Code 2of5 имеют переменную длину, контрольный символ (опционально) и непечатаемые символ начала и стоповый знак. Поддерживаемые символы данных:

• цифры от 0 до 9.

Контрольная сумма рассчитывается исходя из числовых данных ШК по модулю 10.

Industrial 2of5:

каждый символ данных содержит одну цифру. Информация содержится только в линиях ШК.

Interleaved 2of5:

каждый символ данных содержит две цифры, поэтому число цифр всегда четное. Информация содержится и в линиях, и в пробелах ШК. Для данного типа ШК следует использовать проверку на фиксированную длину, чтобы избежать частичных считываний.

S-Code:

декодирование данного типа ШК происходит по аналогии с Interleaved 2of5, однако последний символ декодируется как Industrial 2of5, поэтому число цифр всегда нечетное. Информация содержится и в линиях, и в пробелах ШК. Для данного типа ШК следует использовать проверку на фиксированную длину, чтобы избежать частичных считываний.

Matrix 2of5:

каждый символ данных содержит одну цифру, число цифр может быть как четным, так и нечетным. Информация содержится и в линиях, и в пробелах ШК.

Формат описанных выше ШК указан на рисунке.

Свойства Code 2of5:

- запрет или передача контрольного символа;
- включить проверку контрольного символа;
- выбор минимального числа символов данных;
- включить проверку разрывов у ШК типа Industrial 2of5:
- преобразовывать S-Code в Interleaved 2of5.

Минимальное число символов (1, 3, 5):

данное свойство позволяет изменить минимальную длину, доступные значения:1, 3 и 5. Если число символов будет меньше установленного, то такой ШК считан не будет. Если для ШК типа Code 2of5 установлена проверка на фиксированную длину, то она также будет выполнена

Проверка разрывов:

данное свойство позволяет считывать ШК типа Industrial 2of5, у которых большие или нестандартные разрывы между символами.

Передавать S-Code в формате Interleaved 2of5: данное свойство позволяет преобразовывать S-Code в Interleaved 2of5 путем добавления лидирующего нуля.

Рисунок 3.26. С	Свойства 2of5 и	S-Code
Industrial 2of5, Interl	eaved 2of5, S-Code, I	Matrix 2of5
Лидирующий ноль (опционально)	Данные (от 1 и более символов)	Контр. символ

	SET	
Не передавать проверочный символ	E1	
Передавать проверочный символ	E0	
Без проверки контрольного символа	G0	
Проверять контрольный символ	G1	
Минимальное число символов 1	GE	
Минимальное число символов 3	GF	
Минимальное число символов 5	GI	
Выключить проверку разрывов	GK	
Включить проверку разрывов	GJ	
Не передавать S-Code в формате Interleaved 2of5	GH	
Передавать S-Code в формате Interleaved 2of5	GG	
	END	

3.3.7 Свойства ІАТА

ШК типа IATA имеют переменную длину, контрольный символ (опционально) и непечатаемые символ начала и стоповый знак. Поддерживаемые символы данных:

• цифры от 0 до 9.

Контрольная сумма рассчитывается исходя из числовых данных ШК по модулю 7. Аббревиатура IATA расшифровывается как International Air Transport Association (Международная Ассоциация Воздушного Транспорта). Формат ШК указан на рисунке.

Свойства ІАТА:

- включить проверку контрольного символа;
- выбор метода проверки контрольного символа;
- запрет или передача контрольного символа.

Check digit calculation:

если необходима проверка контрольного символа, нужно выбрать метод проверки.

Рисунок 3.27. Свойства IATA IATA					
(1 digit)	(3 digits)	(2 digits)	(8 digits)	(1 digit)	

	SET	
Без проверки контрольного символа	4H	
Проверять FC и SN	41	
Проверять CPN, FC и SN	4J	
Проверять CPN, AC, FC и SN	4K	
Не передавать проверочный символ	4M	
Передавать проверочный символ	4L	
	END	

3.3.8 Свойства MSI/Plessey

ШК типа MSI/Plessey имеют переменную длину, один или два контрольных символа CD1 и CD2 (опционально) и непечатаемые символ начала и стоповый знак. Поддерживаемые символы данных:

• цифры от 0 до 9.

Контрольная сумма рассчитывается исходя из числовых данных ШК по модулю 10 или 11. Контрольный символ CD2 рассчитывается исходя из числовых данных ШК и CD1 по модулю 10 или 11. Формат ШК указан на рисунке.

Свойства MSI/Plessey:

- отключить проверку контрольного символа;
- выбор метода проверки контрольного символа;
- выбор числа передаваемых контрольных символов.

Проверять контрольный символ:

если необходима проверка контрольного символа, нужно выбрать метод проверки.

Не передавать проверочный символ:

контрольные символы CD1 и CD2 не передаются.

Передавать 1-ый проверочный символ:

контрольный символ CD2 не передается.

Передавать оба проверочных символа:

передаются оба контрольных символа.

Рисунок 3.28. Сво	йства MSI	/Plessey
MSVF	elessey	
Данные (от 1 до 13 символов)	Контр. символ 1	Контр. символ 2

	SET	
Без проверки контрольного символа	4A	
Проверка 1-го по модулю 10	4B	
Проверка обоих по модулю 10	4C	
Проверка 1-го по модулю 10/ 2-го по модулю 11	4D	
Проверка 1-го по модулю 11/ 2-го по модулю 10	4R	
Не передавать проверочный символ	4G	
Передавать 1-ый проверочный символ	4E	
Передавать оба проверочных символа	4F	
	END	

3.3.9 Свойства Теlереп

ШК типа Telepen имеют переменную длину, контрольный символ и непечатаемые символ начала и стоповый знак. Поддерживаемые символы данных:

- в цифровом режиме (numeric mode), цифры от 00 до 99;
- в режиме ASCII (ASCII mode), все 128 символов ASCII.

Контрольная сумма рассчитывается исходя из данных ШК по модулю 127. Контрольный символ не передается. Формат ШК указан на рисунке.

Свойства Telepen:

• выбор режима ASCII.

Рисунок 3.29. Свойства	Telepen
Telepen	· V
Данные (от 1 до 32 символов)	Контр. символ

	SET	
Numeric mode	D2	
ASCII mode	D3	
	END	

3.3.10 Свойства UK/Plessey

ШК типа UK/Plessey имеют переменную длину, контрольный символ (обязательно) и непечатаемые символ начала и стоповый знак. Поддерживаемые символы данных:

- цифры от 0 до 9;
- буквы от А до F.

Контрольная сумма состоит из двух цифр и рассчитывается исходя из числовых данных ШК. Формат ШК указан на рисунке.

Свойства UK/Plessey:

- включить преобразование А в Х;
- запретить передачу контрольного символа;
- включить вставку пробела (CLSI).

Вставка пробела:

при включенном свойстве происходит вставка пробела на позиции 2, 5, 11 и 14.

Преобразование А в Х:

при включенном свойстве происходит преобразование символа A в X. Это влияет на данные и контрольную сумму.

Рисунок 3.30. Свойства UK/	Plessey
UK/Plessey	.,
Данные (от 5 до 20 символов)	Контроль ный символ

	SET	
Не передавать проверочный символ	40	
Передавать проверочный символ	4N	
Выключить вставку пробела	DO	
Включить вставку пробела	DN	
Выключить преобразование А в X	DP	
Включить преобразование А в X	DQ	
	END	

3.3.11 Свойства Code 128 и EAN-128

Code 128:

ШК типа Code 128 имеют переменную длину, контрольный символ (обязательно) и непечатаемые символ начала и стоповый знак. Поддерживаемые символы данных:

- все 128 символов ASCII;
- 4 функциональных символа;
- 3 символа начала;
- 4 символа для выбора кодового набора;
- 1 стоповый символ.

Контрольная сумма рассчитывается как сумма произведений весовых коэффициентов на соответствующие значения по модулю 103. Формат ШК указан на рисунке.

Свойства Code 128:

• включить конкатенацию.

EAN-128:

в данном режиме Code 128 передается в формате EAN-128. Начинается такой код с символа FNC1, также этот символ делит данные ШК на две части. Первый символ FNC1 передается в виде]C1, второй — в виде символа ASCII GS (в шестнадцатеричной — 1D). Формат ШК указан на рисунке.

Свойства ЕАN-128:

• включить преобразование к EAN-128.

Enable EAN-128 only:

в данном режиме данные передаются в формате EAN-128. Если данные ШК не удовлетворяют формату EAN-128, то ШК считан не будет.

Enable EAN-128 if possible:

в данном режиме данные передаются в формате EAN-128. Если данные ШК не удовлетворяют формату EAN-128, то ШК не преобразуется.

FNC2 Concatenation:

если в начале Code 128 стоит символ FNC2, то при считывании данные ШК помещаются в буфер сканера. Как только будет считан ШК типа Code 128 без символа FNC2 в начале данных, данные обоих ШК будут объединены и переданы на ПК, а буфер будет очищен. Если будет считан ШК, отличный от типа Code 128, то будут переданы только его данные, а буфер будет очищен. Размер буфера зависит от модели сканера.

Рису	/нок 3.31. Свойства Code 128 и EAN- 128
	Code 128
	Данные
	(от 1 до более символов)

Рису	нок 3.32. Свой	ства Со 128	de 128 и EAN-
	EA	W-128	
]C1	Данные (от 1 до более символов)	<gs></gs>	Данные (от 1 до более символов)

	SET	
Disable EAN-128	OF	
Enable EAN-128 only	JF	
Enable EAN-128 if possible	OG	
Выключить конкатенацию	MP	
Включить конкатенацию	МО	
	END	

3.3.12 Свойства Code 93

ШК типа Code 93 имеют переменную длину, два контрольных символа (обязательно) и непечатаемые символ начала и стоповый знак. Поддерживаемые символы данных:

- цифры от 0 до 9;
- заглавные буквы от А до Z;
- символы . \$ / + % пробел;
- 4 непечатаемых символа.

Первый контрольный символ (С) рассчитывается как сумма весовых коэффициентов данных по модулю 47. Второй контрольный символ (К) рассчитывается как сумма весовых коэффициентов данных и первого контрольного символа по модулю 47. Формат ШК указан на рисунке.

Свойства Code 93:

- включить конкатенацию;
- запрет или передача проверочных символов;
- включить проверку контрольного символа.

Конкатенация (Concatenation):

если данные ШК начинаются с пробела, то при считывании ШК данные помещаются в буфер сканера без пробела. Как только будет считан ШК типа Code 93 без пробела в начале данных, данные обоих ШК будут объединены и переданы на ПК, а буфер будет очищен. Если будет считан ШК, отличный от типа Code 93, то будут переданы только его данные, а буфер будет очищен. Размер буфера зависит от модели сканера.

Рисунок 3.33. (Свойства Со	de 93
Co	ode 93	
Данные (от 1 до более символов)	Контроль ный символ С	Контроль ный символ К

	SET	
Без проверки контрольного символа	9Q	
Проверять контрольный символ	AC	
Не передавать проверочный символ	DZ	
Передавать проверочный символ	DY	
Выключить конкатенацию	+W	
Включить конкатенацию	+V	
	END	

3.3.13 Свойства Code 11

ШК типа Code 11 имеют переменную длину, один или два проверочных символа (опционально) и непечатаемые символ начала и стоповый знак. Если в данных 10 или менее символов, то используется один проверочный символ, если больше — два проверочных символа. Поддерживаемые символы данных:

- цифры от 0 до 9;
- символ '-' (тире).

Первый контрольный символ рассчитывается как сумма весовых коэффициентов данных по модулю 11. Второй контрольный символ рассчитывается как сумма весовых коэффициентов данных и первого контрольного символа по модулю 11. Формат ШК указан на рисунке.

Свойства Code 11:

- отключить проверочные символы;
- автоматическая проверка числа проверочных символов (в зависимости от числа символов данных);
- передача проверочных символов.

Рисунок 3.34. Свойств	a Code	11
Code 11		
Данные (от 1 до более символов)	cd1	cd2

	SET	
Без проверки контрольного символа	BLF	
Проверять 1-ый контрольный символ	BLG	
Проверять 2-ой контрольный символ	BLH	
Проверять оба контрольных символа	BLI	
Не передавать проверочный символ	BLJ	
Передавать проверочный символ	BLK	
	END	

3.3.14 Свойства Korean Postal Authority

ШК типа Korean Postal Authority имеют фиксированную длину и проверочный символ (обязательно). Формат ШК указан на рисунке.

Свойства Korean Postal Authority:

- запрет или передача тире;
- запрет или передача проверочного символа.

Передавать тире:

Символ '-' (тире) передается между третьим и четвертым символом.

Рисунок	3.35. Свойст Authority		ean Postal
1	Korean Postal Au	thority co	ode
Контроль ный символ	Данные (3 символа)	Тире	Данные (3 символа)

	SET	
Не передавать проверочный символ	*_	
Передавать проверочный символ	*+	
Не передавать тире	*/	
Передавать тире	*.	
	END	

3.3.15 Свойства RSS

Поддержка данных свойств зависит от модели сканера.

Максимальный размер ШК:

- тип RSS-14 и RSS limited: идентификатор приложения «01» и 14 символов данных;
- RRS Expanded: 74 цифровых или 41 буквенных символов.

Контрольные суммы:

в ШК семейства RSS всегда используются контрольные суммы. У типа RSS-14 расчет производится по модулю 79, у RSS limited – по модулю 89, у RSS Expanded – по модулю 211.

Поддерживаемые символы:

- тип RSS-14 и RSS limited: цифры от 0 до 9;
- RSS Expanded: подмножество символов ISO 646: символы верхнего и нижнего регистров, цифры, 20 символов пунктуации и служебный символ FNC1.

Поддерживаются следующие типы RSS:

- RSS-14, включая усеченный, сложенный, сложенный многоплоскостной;
- RSS limited;
- RSS Expanded, Expanded сложенный.

Формат ШК указан на рисунке.

Свойства RSS:

- передача проверочного символа;
- передача идентификатора приложения.

Рисунок 3	3.36. Свойства Р	RSS
RSS	3-14, RSS Limited	
Идентификатор приложения (01)	Данные (13 символов)	Контроль ный символ

Рисунок 3.37. Свойс	тва RSS
RSS Expanded	
Данные (от 1 до 73 символов)	Контроль ный символ

	SET	
Не передавать проверочный символ	DM	
Передавать проверочный символ	DL	
Не передавать идентификатор приложения	DT	
Передать идентификатор приложения	DS	
	END	

3.3.16 Свойства составных ШК

ШК типа СС-А является модифицированной версией ШК типа MicroPDF417.

ШК типа СС-В является стандартным ШК типа MicroPDF417.

ШК типа СС-С является стандартным ШК типа PDF417.

Максимальный размер ШК:

- CC-A: 56 символов;
- СС-В: 338 символов;
- СС-С: 2361 символ.

Коррекция ошибок:

- для линейной части ШК возможно только детектирование ошибки;
- для составной части используется коррекция Reed Solomon.

Поддерживаемые символы:

- 128 символов ASCII 0-127 (ISO 646);
- символы ASCII 128-255 (ISO 8859-1, Latin alphabet No 1, расширенный ASCII);
- множество других различных символов (ЕСІ).

Форматы ШК указаны на рисунках.

Свойства составных ШК:

- разрешить составной ШК;
- игнорировать ссылочный флаг;
- режим вывода.

Рисунок 3.38. Сво	йства составных ШН
Com	posite A
Данные 1D (от 1 до 73 символов)	Данные составного ШК (от 1 до 56 символов)

Рисунок 3.39. Сво	йства составных Ш
Com	posite B
Данные 1D (от 1 до 73 символов)	Данные составного ШК (от 1 до 338 символов)

Рисунок 3.40. Сво	йства составных ШК
Com	posite C
Данные 1D (от 1 до 73 символов)	Данные составного ШК (от 1 до 2361 символов)

Composite Enable	Link Flag	Output Mode	Output Result
BHE	RP	BLo	1D / 1D+2D
BHE	RP	BL1	2D / 1D+2D
BHE	RP	BL2	1D / 2D / 1D+2D
BHE	RQ	BLO	1D+2D
BHE	RQ	BL1	1D+2D
BHE	RQ	BL2	1D+2D
BHF	RP	BLO	1D
BHF	RP	BL1	2D
BHF	RP	BL2	1D / 2D
BHF	RQ	BLO	1D
BHF	RQ	BL1	2D
BHF	RQ	BL2	1D / 2D

	SET	
Не игнорировать ссылочный флаг	RQ	
Игнорировать ссылочный флаг	RP	
Отключить составной ШК для RSS	BHF	
Включить составной ШК для RSS	BHE	
Разрешено считывание только 1D части	BL0	
Разрешено считывание только 2D части	BL1	
Разрешено считывание обеих частей	BL2	
	END	

3.3.17 Свойства DataMatrix

ШК типа DataMatrix имеют переменную длину и набор уровней коррекции ошибок.

Максимальный размер ШК (ЕСС200):

• буквенно-цифровые данные: 2335 символов;

• 8-битные данные: 1556 символов;

• цифровые данные: 3116 символов.

Размер символов:

ECC000-140:

- нечетное число колонок и строк, квадратная форма;
- минимум: 9*9, максимум: 49*49. ECC200:
- четное число колонок и строк, квадратная или прямоугольная форма;
- квадратная: минимум 10*10, максимум 144*144;
- прямоугольная: минимум 8*18, максимум 16*48.

Коррекция ошибок:

- ЕСС000-140: четыре уровня проверки сверточным кодом;
- ECC200: коррекция Reed Solomon.

Дополнительные параметры:

- ECI: только ECC200: поддержка различных наборов символов и преобразований данных;
- только ECC200: представление данных в виде символов Data Matrix (до 16 символов).

Поддержка данных свойств зависит от модели сканера. Поддерживаемый набор символов и максимальное число декодируемых символов так же зависит от модели сканера.

Поддерживаемые символы:

- 128 символов ASCII 0-127 (ISO 646);
- символы ASCII 128-255 (ISO 8859-1, Latin alphabet No 1, расширенный ASCII);
- множество других различных символов (ЕСІ).

Формат ШК указан на рисунке.

Свойства DataMatrix:

• период ожидания считывания: смотреть раздел Режимы считывания.

Рисунок 3.42. Свойства DataMatrix

DataMatrix

Данные (от 1 до 3116 символов)

3.3.18 Свойства Aztec

ШК типа DataMatrix имеют переменную длину и набор уровней коррекции ошибок.

Максимальный размер ШК:

Aztec:

• буквенно-цифровые данные: 3067 символов;

• цифровые: 3832 символа;

байты: 1914 символов.

Aztec Runes:

фиксированный: 11*11.

Коррекция ошибок:

устанавливаемый пользователем уровень коррекции Reed-Solomon.

Дополнительные параметры:

- ECI: поддержка различных наборов символов и преобразований данных.
- представление данных в виде символов Aztec (до 26 символов).
- зеркальное представление символов.

Поддержка данных свойств зависит от модели сканера. Поддерживаемый набор символов и максимальное число декодируемых символов так же зависит от модели сканера.

Поддерживаемые символы:

- 128 символов ASCII 0-127 (ISO 646);
- символы ASCII 128-255 (ISO 8859-1, Latin alphabet No 1, расширенный ASCII);
- множество других различных символов (ЕСІ).

Формат ШК указан на рисунке.

Свойства Aztec:

 период ожидания считывания: смотреть раздел Режимы считывания.

Рисунок 3.43. Свойства Aztec

Aztec

Данные (от 1 до 3832 символов)

3.3.19 Свойства QR Code

ШК типа QR Code имеют переменную длину и набор уровней коррекции ошибок.

Максимальный размер ШК:

Модель 1:

• буквенно-цифровые данные: 707 символов;

• 8-битные данные: 486 символов;

• цифровые данные: 1167 символов;

• символы Канжи: 299 символов. Молель 2:

• буквенно-цифровые данные: 4296 символов;

• 8-битные данные: 2953 символа;

• цифровые данные: 7089 символов;

• символы Канжи: 1817 символов.

Размер символов:

Модель 1:

• минимум: 21*21;

• максимум: 73*73.

Модель 2:

• минимум: 21*21;

• максимум: 177*177.

Коррекция ошибок:

четыре уровня коррекции Reed-Solomon.

Дополнительные параметры:

- ECI: только Модель 2: поддержка различных наборов символов и преобразований данных.
- представление данных в виде символов QR Code (до 16 символов).

Поддерживаемый набор символов и максимальное число декодируемых символов зависит от модели сканера.

Поддерживаемые символы:

- 128 символов ASCII 0-127 (ISO 646);
- символы ASCII 128-255 (ISO 8859-1, Latin alphabet No 1, расширенный ASCII);
- множество других различных символов (ЕСІ).

Формат ШК указан на рисунке.

Свойства QR Code:

• период ожидания считывания: смотреть раздел Режимы считывания.

Рисунок 3.44. Свойства QR Code

QR Code

Данные (от 1 до 7089 символов)

3.3.20 Свойства Micro QR Code

ШК типа Micro QR Code представляют собой сжатую версию ШК типа QR Code.

Максимальный размер ШК:

Модель 1:

- цифровые данные: 5 символов. Модель 2:
- буквенно-цифровые данные: 6 символов;
- цифровые данные: 10 символов. Модель 3:
- буквенно-цифровые данные: 11 символов;
- 8-битные данные: 9 символов;
- цифровые данные: 18 символов;
- символы Канжи: 6 символов. Модель 4:
- буквенно-цифровые данные: 21 символ;
- 8-битные данные: 15 символов;
- цифровые данные: 35 символов;
- символы Канжи: 9 символов.

Размер символов:

Модель 1:

- 11.
- Модель 2:
- 13.

Модель 3:

- 15.
- Модель 4:
- 17.

Коррекция ошибок:

до трех уровней коррекции Reed-Solomon для модели 4. Для модели 1 коррекции нет.

Поддерживаемые символы:

• 128 символов ASCII 0-127 (ISO 646).

Формат ШК указан на рисунке.

Рисунок 3.45. Свойства Micro QR Code

Мicro QR Code

Данные (от 1 до 35 символов)

3.3.21 Свойства Махісофе

ШК типа Maxicode имеют переменную длину и набор уровней коррекции ошибок.

Максимальный размер ШК:

• буквенно-цифровые данные: 93 символа;

• цифровые данные: 138 символов.

Размер символов:

Ш*В: 28.14 мм * 26.91 мм, включая «свободную» зону («тихую» зону).

Коррекция ошибок:

2 уровня коррекции Reed-Solomon.

Дополнительные параметры:

- ECI: только Модель 2: поддержка различных наборов символов и преобразований данных.
- представление данных в виде символов Maxicode (до 8 символов).

Поддержка данных свойств зависит от модели сканера. Поддерживаемый набор символов и максимальное число декодируемых символов так же зависит от модели сканера.

Поддерживаемые символы:

- 128 символов ASCII 0-127 (ISO 646);
- символы ASCII 128-255 (ISO 8859-1, Latin alphabet No 1, расширенный ASCII);
- множество других различных символов (ЕСІ).

Свойства Maxicode:

• период ожидания считывания: смотреть раздел Режимы считывания.

Рисунок 3.46. Свойства Maxicode

Махісоde

Данные (от 1 до 138 символов)

3.3.22 Свойства PDF417

ШК типа PDF417 являются многорядными (сложенными), имеют переменную длину и набор уровней коррекции ошибок.

Максимальный размер ШК:

• буквенные данные: 1850 символов;

• байтные данные: 1108 символов;

• цифровые данные: 2710 символов.

Размер символов:

число рядов: от 3 до 90;

• число столбцов: от 1 до 30.

Коррекция ошибок:

восемь уровней коррекции.

Дополнительные параметры:

- ECI: поддержка различных наборов символов и преобразований данных.
- макро PDF417: представление данных в виде символов PDF417 (до 99999 символов);
- усеченный PDF417: уменьшение числа служебных символов для уменьшения размера ШК.

Поддержка данных свойств зависит от модели сканера. Поддерживаемый набор символов и максимальное число декодируемых символов так же зависит от модели сканера.

Поддерживаемые символы:

- 128 символов ASCII 0-127 (ISO 646);
- символы ASCII 128-255 (ISO 8859-1, Latin alphabet No 1, расширенный ASCII);
- для макро PDF417: множество других различных символов.

Свойства PDF417:

• тайм-аут макро PDF417: то же самое, что период ожидания считывания (смотреть раздел Режимы считывания).

Рисунок 3.47. Свойства PDF417

PDF417

Данные (от 1 до 2710
символов)

3.3.23 Свойства MicroPDF417

ШК типа PDF417 являются многорядными (сложенными), имеют переменную длину и фиксированный набор уровней коррекции ошибок

Максимальный размер ШК:

буквенные данные: 250 символов;
байтные данные: 150 символов;
цифровые данные: 336 символов.

Размер символов:

число рядов: от 4 до 44;число столбцов: от 1 до 4.

Коррекция ошибок:

число корректирующих кодовых комбинаций зависит от размера символов и не может быть изменено.

Дополнительные параметры:

- ECI: поддержка различных наборов символов и преобразований данных.
- макро MicroPDF417: представление данных в виде символов MicroPDF417 (до 99999 символов).

Поддержка данных свойств зависит от модели сканера. Поддерживаемый набор символов и максимальное число декодируемых символов так же зависит от модели сканера/

Поддерживаемые символы:

- 128 символов ASCII 0-127 (ISO 646);
- символы ASCII 128-255 (ISO 8859-1, Latin alphabet No 1, расширенный ASCII);
- для макро MicroPDF417: множество других различных символов.

Свойства MicroPDF417:

• тайм-аут макро MicroPDF417: то же самое, что период ожидания считывания (смотреть раздел Режимы считывания).

Рисунок 3.48. Свойства MicroPDF417

MicroPDF417

Данные (от 1 до 366 символов)

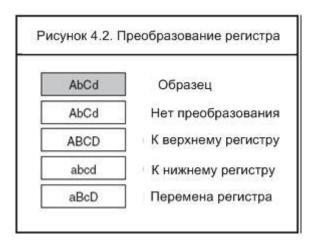
4. Свойства формата ШК

В данной главе приводятся свойства, позволяющие изменить формат передаваемого ШК.

Доступны следующие свойства:

- преобразования регистра;
- передача идентификатора кода;
- передача длины кода;
- передача префикса;
- передача суффикса.

Формат указан на рисунке. Данные ШК имеют формат, описанный в главе Свойства ШК.


P	исунок 4	4.1. Свойст	ва фор	мата
Преам була	Пре фикс	Данные	Суф фикс	Заключи тельная часть

Заметка:

в общем случае преамбула и заключительная часть эквивалентны префиксу и суффиксу, соответственно.

4.1 Преобразование регистра

Данные ШК могут быть преобразованы к верхнему или нижнему регистру, либо регистр может быть изменен на противоположный. Данное свойство используется в случае, когда пользователю необходимо, чтобы CAPSLOCK был постоянно включен, или если вводимые символы должны быть в верхнем регистре.

	SET	
Нет преобразования	YZ	
К верхнему регистру	YW	
К нижнему регистру	YX	
Перемена регистра	YY	
	END	

4.2 Установка префикса и суффикса

Префикс и суффикс размером до четырех символов каждый могут быть заданы в начале и конце ШК, соответственно.

Для программирования сканера, подключенного по RS-232, используются 128 символов ASCII. Клавиатурные сканеры могут дополнительно использовать функциональные клавиши.

Настройки по умолчанию:

- RS-232: префикс отсутствует, суффикс ^M (CR);
- клавиатурный: префикс отсутствует, суффикс возврат.

Как задать префикс или суффикс:

чтобы для ШК типа Code 39 задать префикс, например 'C39:', нужно считать программирующие ШК в следующем порядке:

<SET>

<Set prefix Code 39>

<C>

<3>

<9>

<:>

<END>

Как убрать префикс или суффикс:

чтобы для всех ШК типа Code 128 убрать суффикс, нужно считать программирующие ШК в следующем порядке:

<SET>

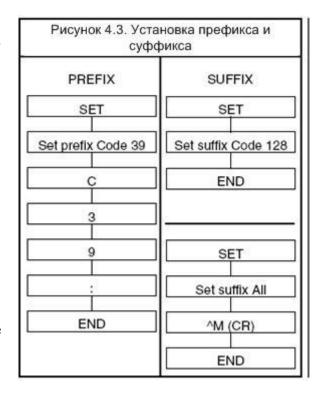
<Set suffix Code 128>

<END>

Как задать суффикс для всех типов ШК:

чтобы для всех типов ШК задать один суффикс, например 'CR', нужно считать программирующие ШК в следующем порядке:

<SET>


<Set suffix ALL>

<^M (CR)>

<END>

Учтите, что последний пример предназначен для сканеров с интерфейсом RS-232. Для клавиатурных сканеров данный суффикс равносилен нажатию комбинации клавиш <ctrl>M.

Для задания суффикса <возврат каретки> или <Enter> для клавиатурного сканера нужно использовать <Return>.

Преамбула и заключительная часть

Преамбула передается перед префиксом и может содержать до восьми символов. Заключительная часть передается после суффикса и может содержать до восьми символов. Преамбула и заключительная часть передаются для всех типов ШК. По умолчанию они пусты.

Идентификационный код Opticon

Идентификатор и длину кода можно передавать в качестве префикса или суффикса. Метод прямого ввода идентификатора ШК обеспечивает быстрое программирование наряду с заданием различных префиксов или суффиксов для разных типов ШК. Смотрите рисунок.

Идентификационный код AIM/ISO

Идентификатор кода будет передан в формате ISO 15424:]cm, где:

-] -ASCII значение десятичного числа 93;
- с кодовый символ;
- т символ преобразования.

Для получения полного списка символов преобразования 'm' и идентификаторов AIM следует обратиться к стандарту ISO 15424. Смотрите рисунок 4.5.

Длина кода:

длина кода передается в виде двухзначного десятичного числа и содержит в себе число символов данных, включая префикс и суффикс. Для двумерных ШК длина кода передается в виде шестизначного числа. Возможна передача длины в виде шестизначного числа, как для двумерных, так и для линейных ШК.

Пример:

если необходимо задать префикс <идентификатор кода>:<длина кода>:, то нужно считать программирующие ШК в следующем порядке:

- <SET>
- <Set prefix all>
- <идентификатор кода>
- <:>
- <длина кода>
- <:>
- <END>

Если, например, для ШК типа Code 39 необходимо использовать другой идентификатор, то нужно считать ШК в следующей последовательности:

- <SET>
- <Set prefix all>
- <идентификатор кода>
- <:>
- <Set prefix Code 39>
- <\$>
- <:>
- <END>

Рисунок 4.4. Установка прес	рикса и
суффикса	
Идентификаторы кода Ор	oticon
UPC-A	- C
UPC-A +2	- F
UPC-A +5	- G
UPC-E	- D
UPC-E+2	- H
UPC-E+5	- 1
EAN-13	- B
EAN-13 +2	- L
EAN-13 +5	- M
EAN-8	- A
EAN-8 +2	- J
EAN-8 +5	- K
Code 39	- V
Code 39 Full ASCII	- W
Italian Pharmaceutical	- Y
Codabar	- R
Codabar ABC	- S
Codabar CX	- f
Industrial 2of5	- 0
Interleaved 2of5	- N
S-Code	- g
Matrix 2of5	- Q
IATA	- P
MSI/Plessey	- Z
Telepen	- d
UK/Plessey	- a
Code 128	- T
EAN-128	- T
Code 93	- U
Code 11	- b
Korean Postal Authority code	- c
RSS	- y
CC-A	- m
СС-В	- n
CC-C	- 1
DataMatrix	- t
Aztec	- 0
QR code	- u
Maxi Code	- v
MicroPDF417	- s
PDF417	r

Идентификаторы АІМ/				
Symbology]AIM-ID *(Modifier tabl		
UPC-A]E0		
EAN-13	-1	1		
UPC-E				
UPC-A +2		JE3		
UPC-A+5	-1	477		
UPC-E +2	-			
UPC-E+5	-			
EAN-13 +2	-			
EAN-13 +5	-1			
EAN-8]E4		
EAN-8 +2	٥,]E7		
EAN-8 +5	-1		n y y new ze	
Code 39]A*	(4.06)	
Code 39 Full ASCII	-1	****		
Tri-Optic	-	JX0		
Code 39 lt. Pharmaceutical	.1	154	(4.07)	
Codabar Codabar ABC	1]F*	(4.07)	
Codabar CX		JXO		
Industrial 2of5]S0		
Interleaved 2of5]]*	(4.08)	
S-Code		JXO	(4.00)	
Matrix 2of5	-1	J. Co		
IATA		IR*	(4.09)	
MSI/Plessey			(4.10)	
770		jxo		
Telepen]B*	(4.11)	
Code 128		JC0		
EAN-128]C1		
Code 93	-]G0	10.12	
Code 11	-]H*	(4.12)	
(D4-1 A at -2	-	JX0		
Corean Postal Authority code	*]X0		
RSS with CC-A	* -1]e0		
RSS with CC-B				
EAN-128 with CC-C				
CC-A (transmitted separately)]e1		
CC-B (transmitted separately)	-1	4000		
CC-C (transmitted separately)				
PDF417]LO		
MicroPDF417	.1	5633		
Data Matrix	-]d*	(4.13)	
Aztec	*]z*	(4.14)	
QR Code	*]Q*		
Maxicode	*	JU*	(4.16)	

	424: A*
Code options]AIM-ID
Normal Code 39 (D5)	
Not check CD (C1)	JA0
Transmit CD (D9)	
Normal Code 39 (D5)	
Check CD (C0)]A1
Transmit CD (D9)	2500
Normal Code 39 (D5)	
Not check CD (C1)]A2
Not transmit CD (D8)	0.501001
Normal Code 39 (D5)	
Check CD (C0)]A3
Not transmit CD (D8)	12796
Full ASCII Code 39 (D4)	
or Full ASCII Code 39 if pos. (+K)	JA4
Not check CD (C1)	
Transmit CD (D9)	
Full ASCII Code 39 (D4)	
or Full ASCII Code 39 if pos. (+K)	JA5
Check CD (C0)	
Transmit CD (D9)	
Full ASCII Code 39 (D4)	
or Full ASCII Code 39 if pos. (+K)	JA6
Not check CD (C1)	
Not transmit CD (D8)	
Full ASCII Code 39 (D4)	
or Full ASCII Code 39 if pos. (+K)	JA7
Check CD (C0)	
Not transmit CD (D8)	

Code options	JAIM-ID
Codabar normal mode (HA)	-
Not check CD (H7)	1FO
Transmit CD (H8)	80
Codabar ABC (H3 or H4)	
Not check CD (H7)]F1
Transmit CD (H8)	\$3
Codabar normal mode (HA)	54
Check CD (H6)	JF2
Transmit CD (H8)	• • • • • • • • • • • • • • • • • • • •
Codabar ABC (H3 or H4)	
Check CD (H6)]F3
Transmit CD (H8)	₹25000
Codabar normal mode (HA)	
Not check CD (H7)]F4
Not transmit CD (H9)	26
Codabar ABC (H3 or H4)	-82
Not check CD (H7)]F5
Not transmit CD (H9)	88
Codabar normal mode (HA)	8.0
Check CD (H6)]F6
Not transmit CD (H9)	
Codabar ABC (H3 or H4)	
Check CD (H6)]F7
Not transmit CD (H9)	2000

Int	Преобразователи terleaved 2of5 торы AIM/ISO 154	0016.5300WG
Code options]AIM-ID
Not check CD (G0)	Transmit CD (E0)]10
Check CD (G1)	Transmit CD (E0)][1
Not check CD (G0)	Not transmit CD (E1)]12
Check CD (G1)	Not transmit CD (E1)]13

0
1
2
3

The Contract of the Contract o			M* / X0
Code optio	ns Checksum + Tra	nsmit	JAIM-ID
Check 1 CD	= MOD 10 (4B):		
(4B) + 1	Fransmit CD1	(4E)	JM0
(4B) + N	Not transmit CD	(4G)]M1
(4B) + 1	Fransmit CD1 and CD2	(4F)	JXO
	's = MOD 10/ MOD 10 (4 4E) or (4G) or (4F)	4C):	JX0
Check 2 CD	's = MOD 10/ MOD 11 (4	4D):	
(4D) + (4E) or (4G) or (4F)		JXO
Check 2 CD	's = MOD 11/ MOD 10 (4	4H):	

Рисунок 4.11. Преобразова Теlepen	атели для
Идентификаторы AIM/ISO	15424: B*
Code options]AIM-ID
Telepen (numeric or ASCII only):	
ASCII mode (D3)]B0
Numeric mode (D2)]B1
Telepen (numeric followed by ASCII): ASCII mode (D3)	jB0
Numeric mode (D2)]B2
Telepen (ASCII followed by numeric)(r	not supported):
ASCII mode (D3)]B0

Рисунок 4.12. Преобразовател Идентификаторы AIM/ISO 154		
Code options]AIM-ID	
Check 1 CD (BLG) or Check auto 1 or 2 CDs (BLI)	јно	

Code options	JAIM-ID
Check 1 CD (BLG)]H0
or Check auto 1 or 2 CDs (BLI)	
(length < 12)	
Transmit CD(s) (BLK)	
Check 2 CDs (BLH)]H1
or Check auto 1 or 2 CDs (BLI)	
(length > 12)	
Transmit CD(s) (BLK)	
Check 1 CD (BLG)]H3
or Check 2 CDs (BLH)	
or Check auto 1 or 2 CDs (BLI)	
(length > 12)	
Not transmit CD(s) (BLJ)	
Not check CD (BLF)	JX0
Not transmit CD(s) (BLJ)	500000

Рисунок 4.13. Преобразователи DataMatrix
Идентификаторы AIM/ISO 15424: d*

Symbology, data structure	JAIM-II
ECC000 - ECC140]d0
ECC200]d1
ECC200, FNC1 in 1st or 5th position]d2
ECC200, FNC1 in 2nd or 6th position]d3
ECC200, supporting ECI protocol]d4
ECC200, FNC1 in 1st or 5th position and supporting ECI protocol]d5
ECC200, FNC1 in 2nd or 6th position and supporting ECI protocol]d6

Рисунок 4.14. Преобразователи Aztec Идентификаторы AIM/ISO 15424: z*

Data structure]AIM-ID
No structure / other]z0
FNC1 preceeding 1st message character]z1
FNC1 following an initial letter or pair of digits]z2
ECI protocol implemented]z3
FNC1 preceeding 1st message character and ECI protocol implemented]z4
FNC1 following an initial letter or pair of digits ECI protocol implemented	,]z5
Structured append header included]z6
Structured append header included and FNC1 preceeding 1st message character	jz7
Structured append header included, FNC1 following an initial letter or pair of digits]z8
Structured append header included and ECI protocol implemented]z9
Structured append header included, FNC1 preceeding 1st message character, ECI protocol implemented]zA
Structured append header included, FNC1 following an initial letter or pair of digits ECI protocol implemented]z8
Aztec runes]zC

Рисунок 4.15. Преобразователи QR Code Идентификаторы AIM/ISO 15424: Q*

Model, data structure]AIM-ID
Model 1]Q0
Model 2, ECI protocol not implemented	JQ1
Model 2, ECI protocol implemented	JQ2
Model 2, ECI protocol not implemented, FNC1 in first position	jQ3
Model 2, ECI protocol implemented, FNC1 in first position]Q4
Model 2, ECI protocol not implemented, FNC1 in second position	JQ5
Model 2, ECI protocol implemented, FNC1 in second position	JQ6

Рисунок 4.16. Преобразователи Maxicode Идентификаторы AIM/ISO 15424: U*

Data structure]AIM-ID
Symbol in mode 4 or 5]U0
Symbol in mode 2 or 3	JU1
Symbol in mode 4 or 5,	JU2
ECI protocol implemented	. 6,000
Symbol in mode 2 or 3,	JU3
ECI protocol implemented	. 56

4.2.1 Установка префикса

	SET	
All Codes	RY	
UPC-A	N1	
UPC-A + add on	M0	
UPC-E	N2	
UPC-E + add on	M1	
EAN-13	N3	
EAN-13 + add on	M2	
EAN-8	N4	
EAN-8 + add on	МЗ	
Code 39	M4	
Codabar	M5	
Industrial 2of5	M6	
Interleaved 2of5	M7	
	END	

	SET	
S-Code	МВ	
Matrix 2of5	GL	
IATA	18	
MSI/Plessey	N0	
Telepen	L8	
UK/Plessey	MA	
Code 128	M9	
Code 93	M8	
Code 11	BLD	
Korean Postal Authority code	*\$	
RSS	OE	
Composite codes	RR	
DataMatrix	MD	
	END	

	SET	
Aztec	BF0	
QR Code	MK	
Maxicode	ML	
PDF417	ОС	
MicroPDF417	OD	
ISO track 1 (IATA)	МН	
ISO track 2 (ABA)	МІ	
ISO track 3 (THRIFT)	MJ	
Clear all prefixes	MG	
Preamble	MZ	
	END	

4.2.2 Установка суффикса

	SET	
All Codes	RZ	
UPC-A	N6	
UPC-A + add on	00	
UPC-E	N7	
UPC-E + add on	01	
EAN-13	N8	
EAN-13 + add on	O2	
EAN-8	N9	
EAN-8 + add on	O3	
Code 39	04	
Codabar	O5	
Industrial 2of5	O6	
Interleaved 2of5	07	
	END	

	SET	
S-Code	ОВ	
Matrix 2of5	GM	
IATA	19	
MSI/Plessey	N5	
Telepen	L9	
UK/Plessey	OA	
Code 128	O9	
Code 93	08	
Code 11	BLE	
Korean Postal Authority code	*%	
RSS	PQ	
Composite codes	RS	
DataMatrix	РО	
	END	

	SET	
Aztec	BF1	
QR Code	PW	
Maxicode	PX	
PDF417	PY	
MicroPDF417	PZ	
ISO track 1 (IATA)	PT	
ISO track 2 (ABA)	PU	
ISO track 3 (THRIFT)	PV	
Clear all suffixes	PR	
Postamble	PS	
	END	

4.3.1 Символы прямого ввода

	SET	
F1	8J	
F2	8K	
F3	8L	
F4	8M	
F5	8N	
F6	80	
F7	8P	
F8	8Q	
F9	8R	
F10	88	
F11	8T	
F12	8U	
Backspace	9X	
	END	

	SET	
TAB	7H	
RETURN	71	
Enter (Numeric keypad)	7Q	
ESC	7J	
Arrow down	7K	
Arrow up	7L	
Arrow right	7M	
Arrow left	7N	
	7T	
<insert></insert>	VQ	
<home></home>	VR	
<end></end>	VS	
Page up	70	
	END	

	SET	
Page down	7P	
Left <shift></shift>	7U	
Left <ctrl></ctrl>	7W	
Left <alt></alt>	7Y	
Right <shift></shift>	7V	
Right <ctrl></ctrl>	7X	
Right <alt></alt>	7Z	
CAPSLOCK	98	
	END	

4.3.2 Дополнительные символы прямого ввода

	SET	
<space></space>	5A	
!	5B	
"	5C	
#	5D	
\$	5E	
%	5F	
&	5G	
1	5H	
(51	
)	5J	
*	5K	
+	5L	
,	5M	
	END	

	SET	
-	5N	
	50	
/	5P	
:	6A	
;	6B	
<	6C	
=	6D	
>	6E	
?	6F	
@	6G	
[7A	
\	7B	
]	7C	
	END	

	SET	
^	7D	
_	7E	
ı	7F	
{	9T	
	9U	
}	9V	
~	9W	
	END	

4.3.3 Цифры (прямой ввод)

	SET	
0	Q0	
1	Q1	
2	Q2	
3	Q3	
4	Q4	
5	Q5	
6	Q6	
7	Q7	
8	Q8	
9	Q9	
	END	

4.3.4 Буквы (прямой ввод)

	SET	
А	0A	
В	0B	
С	0C	
D	0D	
E	0E	
F	0F	
G	0G	
Н	ОН	
I	01	
J	OJ	
К	0K	
L	0L	
М	ОМ	
	END	

	SET	
N	ON	
О	00	
Р	0P	
Q	0Q	
R	0R	
s	08	
Т	ОТ	
U	οU	
V	0V	
w	0W	
Х	0X	
Υ	0Y	
z	0Z	
	END	

4.3.5 Буквы в нижнем регистре

	SET	
а	\$A	
b	\$B	
С	\$C	
d	\$D	
е	\$E	
f	\$F	
g	\$G	
h	\$H	
i	\$1	
j	\$J	
k	\$K	
I	\$L	
m	\$M	
	END	

	SET	
n	\$N	
0	\$O	
р	\$P	
q	\$Q	
r	\$R	
s	\$S	
t	\$T	
u	\$U	
v	\$V	
w	\$W	
х	\$X	
у	\$Y	
z	\$Z	
	END	

4.3.6 Прямой ввод управляющих символов

	SET	
^@ (NULL)	9G	
^A (SOH)	1A	
^B (STX)	1B	
^C (ETX)	1C	
^D (EOT)	1D	
^E (ENQ)	1E	
^F (ACK)	1F	
^G (BEL)	1G	
^H (BS)	1H	
시 (HT)	11	
∕J (LF)	1J	
^K (VT)	1K	
^L (FF)	1L	
	END	

	SET	
^M (CR)	1M	
^N (SO)	1N	
^O (SI)	10	
^P (DLE)	1P	
^Q (DC1)	1Q	
^R (DC2)	1R	
^S (DC3)	1S	
^T (DC4)	1T	
^U (NAK)	1U	
^V (SYN)	1V	
^W (ETB)	1W	
^X (CAN)	1X	
^Y (EM)	1Y	
	END	

	SET	
^Z (SUB)	1Z	
^[(ESC)	9A	
^\ (FS)	9B	
^] (GS)	9C	
^^ (RS)	9D	
^_ (US)	9E	
DEL (ASCII 127)	9F	
	END	

4.3.7 Прямой ввод идентификатора кода и длины

	SET	
Идентификационный код	\$2	
Идентификационный код ISO-15424/AIM	\$1	
Длина кода (1D = 2 символа, 2D = 6 символов)	\$3	
Длина кода (1D и 2D = 6 символов)	\$6	
	END	

5.1 Режимы считывания

Доступны следующие режимы считывания:

Single read:

после считывания ШК луч сканера отключается. Чтобы считать следующий ШК, нужно нажать на кнопку считывания. Использование данного режима невозможно одновременно с режимом отключенной кнопки сканирования.

Multiple read:

после считывания ШК луч сканера остается включенным на протяжении заданного времени или неопределенный промежуток времени, если кнопка сканирования отключена. Чтобы считать этот же ШК еще раз, нужно сначала считать какиелибо другие ШК.

Continuous read:

режим постоянного сканирования. В основном данный режим используется для демонстраций и диагностики.

Disable trigger:

данный режим применим к сканерам, у которых есть кнопка сканирования. Если выбран данный режим, то сканер постоянно включен. Заметка: выбор данного режима может уменьшить срок службы сканера. Также, некоторые местные законодательства требуют, чтобы кнопка сканирования была включена. Поэтому использовать этот режим не рекомендуется.

Add-on wait mode:

используется в случае, когда ШК типа UPC/EAN add-on разрешены для считывания. В течение установленного периода времени сканер «ищет» add-on. Если он найден, данные ШК мгновенно передаются. Если add-on не найден, данные передаются без add-on. Если add-on найден, но он не корректный, ШК игнорируется.

Trigger repeat:

данное свойство позволяет снизить процент считывания «ненужного» ШК, если на считываемой поверхности их несколько. При однократном нажатии на кнопку сканирования луч сканера горит заданный период времени. В этот момент нужно направить луч на нужный ШК. При

повторном нажатии на кнопку произойдет считывание и передача данных ШК. Если в течение заданного периода времени кнопка не нажата второй раз, сканер отключается. Процедуру нужно будет повторить заново. Если период заданного времени равен 0, то при нажатии на кнопку сканирования сканер включается, но считывания не происходит. Считывание и передача происходят при отжатии кнопки сканирования. Поддержка данной возможности зависит от модели сканера.

Период ожидания считывания (Structured append time out):

данное свойство используется в случае, когда ШК состоит из нескольких ШК. Следующая часть такого составного ШК должна быть считана до окончания установленного периода. Время задается от 1 до 255 секунд. По умолчанию период времени равен 30 секундам.

	SET	
Single read	S0	
Multiple read	S1	
Continuous read	S2	
Disable trigger	S7	
Enable trigger	S8	
Add-on wait mode disabled	XA	
Add-on wait mode 0.25 sec.	ХВ	
Add-on wait mode 0.50 sec.	хс	
Add-on wait mode 0.75 sec.	XD	
Disable trigger repeat	/K	
Enable trigger repeat	/M	
Structured append time out	BE2	
	END	

5.1.1 Задание интервала времени до повторного считывания

Данное свойство может использоваться в связке с режимом Multiple read.

- Для лазерных и CCD сканеров данное свойство задает интервал времени, в течение которого сканер не может считать один и тот же ШК.
- Для фотосканеров данное свойство задает число кадров, которые должны пройти, прежде чем сканер сможет считать один и тот же ШК. В общем, данное свойство означает, что после считывания одного ШК следует либо считать

другой, прежде чем считывать такой же ШК, либо выждать заданное время. Для фотосканеров интервал измеряется в кадрах. Длительность кадра для каждого изображения своя и зависит от самого изображения.

		1000 000 000
	SET	
50ms	АН	
100ms	Al	
200ms	AJ	
300ms	AK	
400ms	AL	
500ms	АМ	
600ms	AN	
Не определен	AG	
	END	

5.1.2 Свойства «свободной» зоны («тихой» зоны)

Данное свойство позволяет сканеру считывать ШК, у которых границы «свободной» зоны не соответствуют принятым для данного типа ШК. Использовать данное свойство следует очень осторожно. Его использование может стать причиной частичного считывания или дублирования некоторых данных ШК. Не стоит устанавливать размер границ меньше, чем они есть на самом деле. По возможности, лучше использовать корректные ШК, нежели чем прибегать к данной настройке.

	SET	
Без проверки границы	YN	
Граница 1/7 от номинальной	YO	
Граница 2/7 от номинальной	YP	
Граница 3/7 от номинальной	YQ	
Граница 4/7 от номинальной	YR	
Граница 5/7 от номинальной	YS	
Граница 6/7 от номинальной	YT	
Обычная проверка границы	YU	
	END	

5.1.3 Режим автоматического считывания

Данные свойства используются для включения автоматического режима считывания. Данные свойства поддерживаются не всеми сканерами.

Disable auto trigger:

выключить автоматический режим считывания.

Enable auto trigger:

включить автоматический режим считывания.

Stand detection:

Данное свойство позволяет использовать автоматический режим считывания, когда сканер установлен на подставку. Когда сканер извлечен из подставки, режим отключается, для считывания ШК нужно нажимать кнопку сканирования. Поддержка данного свойства зависит от модели сканера и наличия специальной подставки.

5.2 Настройки времени сканирования

Данное свойство позволяет указывать интервал времени, в течение которого луч сканера продолжает гореть после нажатия на кнопку сканирования или (если включен режим Multiple read или Continuous read) после считывания ШК. Если задать нулевой интервал, то луч будет гореть до тех пор, пока кнопка сканирования не будет отжата. Для сканеров, у которых нет кнопки сканирования или она отключена, данное свойство не применимо.

	SET	
Disable auto trigger	+F	
Enable auto trigger	+1	
Enable auto trigger stand detection	*4	
	END	

5.2 Настройки времени сканирования

	SET	
0 seconds	YO	
1 second	Y1	
2 seconds	Y2	
3 seconds	Y3	
4 seconds	Y4	
5 seconds	Y5	
6 seconds	Y6	
7 seconds	Y7	
8 seconds	Y8	
9 seconds	Y9	
Read time * 10	YL	
Не определен	YM	
	END	

5.3 Контроль потребления электроэнергии

У ССD сканеров использование импульсного режима работы светодиодов может снизить потребление электроэнергии. Если выбрано данное свойство, то светодиоды горят лишь в период считывания ШК.

У некоторых ССD сканеров доступен режим низкого энергопотребления светодиодами. Если выбрано данное свойство, то светодиоды индуцируют меньше света, при этом уменьшается глубина сканирующего поля.

Некоторые сканеры с интерфейсом RS-232 могут быть переведены в режим ожидания с целью уменьшения энергопотребления. Если выбрано данное свойство, то сканер находится в режим полного сопротивления (когда нет передачи данных от сканера к ПК). В данном режиме послать команду сканеру нельзя.

Настройки режима работы мотора поддерживаются для определенных моделей сканеров с лазерным излучателем и кнопкой сканирования. По истечении заданного времени после считывания мотор может быть отключен. При нажатии на кнопку сканирования он снова включается. Чтобы уменьшить время включения мотора, можно включить режим, при котором скорость вращения мотора во время простоя будет в два раза ниже номинальной. Время автоматического выключения можно задавать в диапазоне от 1 до 9999 секунд.

	SET	
Непрерывный режим работы светодиодов	S5	
Импульсный режим работы светодиодов	S6	
Режим низкого энергопотребления отключен	vx	
Светодиоды в режиме низкого энергопотребления	VW	
Режим ожидания RS-232 отключен	S4	
Режим ожидания RS-232 включен	S3	
Мотор отключен (при простое)	4Z	
Мотор включен (при простое)	4Y	
Мотор включен (при простое, скорость в два раза ниже номинальной)	BBA	
Время автоматического выключения	BBB	
	END	

5.4 Избыточность

Данное свойство обозначает количество считываний, которое должно быть произведено, чтобы ШК был передан на ПК. Установка большой избыточности снижает скорость считывания ШК, но также снижает вероятность некорректного считывания. Это особенно касается нечетких, размытых, искаженных ШК.

	SET	
Кол-во считываний = 1, избыточность = 0	X0	
Кол-во считываний = 2, избыточность = 1	X1	
Кол-во считываний = 3, избыточность = 2	X2	
Кол-во считываний = 4, избыточность = 3	ХЗ	
	END	

5.5 Стандартные и инверсные ШК Обычно ШК печатается черным цветом на белом фоне, но бывает обратная ситуация. Такие ШК называются Positive (стандартные) и Negative (инверсные), соответственно. Если считывание инверсных ШК разрешено, то это может затруднить считывание стандартных ШК или сделать его невозможным.

	SET	
Стандартные ШК	V2	
Инверсные ШК	V3	
Стандартные и инверсные ШК	V4	
Стандартные ШК	V2	
Стандартные и инверсные ШК	V4	
SET/END	zz	
	END	

5.6 Разрешение и плотность

Данные свойства оптимизируют работу сканера при считывании ШК различного качества. Поддержка данных свойств зависит от модели сканера. Следует экспериментировать с данными настройками для улучшения качества считывания.

Filter:

включение фильтра (Filter ON) улучшает считывание ШК с плохим качеством печати и низкой плотностью.

Scan rate:

уменьшение скорости считывания (Scan rate LOW) улучшает считывание ШК высокой плотности и снижает энергопотребление.

Digitizer (преобразователь):

выбор свойства «high density» улучшает считывание ШК с близкого расстояния и высокой плотности.

Gain (увеличение):

выбор свойства «Gain HIGH» улучшает считывание ШК низкой контрастности и высокой плотности.

	SET	
Filter ON	X4	
Filter OFF	X 5	
Переменное включение и выключение фильтра	X6	
Scan rate high	TJ	
Scan rate low	TK	
Переменная высокая и низкая скорость сканирования фильтра	TL	
Digitizer normal	тм	
Digitizer high density	TN	
Переменный преобразователь	то	
Gain normal	TP	
Gain high	TQ	
Переменное увеличение	TR	
	END	

6.1 Настройки звуковой индикации

Данные свойства позволяют выбрать тип, тональность, продолжительность и громкость звуковой индикации. Выбор тональности и громкости зависят от модели сканера (от типа индикатора).

Тип индикатора

Индикация может быть аппаратной и программной. Не все модели сканеров поддерживают одновременно обе индикации.

Тональность

Если используется программная индикация, то тональность может быть задана в соответствии с таблицей на рисунке.

Длительность и громкость

Если используется программная индикация, ее длительность может принимать значения 50, 100, 200 или 400 мс. Громкость имеет четыре значения: максимальная, громкая, нормальная и тихая.

Звук перед передачей:

Индикация успешного считывания будет выдана после декодирования ШК, но до передачи данных на ПК.

Звук после передачи:

Индикация успешного считывания будет выдана после передачи данных ШК.

Звук при включении:

При включенном свойстве сканер выдает сигнал успешного считывания при включении.

Без звука при включении:

При включенном свойстве сканер не выдает сигнал при включении.

Рисунок 6	.1. Звуковая	индикация
Сигнал	Частота	Длительность
Монотонный	3 KHz	100%
Высокий- низкий	3 KHz - 2.5 KH	tz 50% - 50%
Низкий- высокий	3 KHz - 4 KH	z 50% - 50%

	SET	
Выключить зуммер	wo	
Включить зуммер	W8	
Монотонный зуммер	W1	
Высокий-низкий сигнал	W2	
Низкий-высокий сигнал	W3	
	END	

	SET	
Продолжительность сигнала 50 мс	W7	
Продолжительность сигнала 100 мс	W4	
Продолжительность сигнала 200 мс	W5	
Продолжительность сигнала 400 мс	W6	
Громкость: максимальная	то	
Громкость: высокая	T1	
Громкость: нормальная	T2	
Громкость: минимальная	Т3	
Звук перед передачей	VY	
Звук после передачи	VZ	
Без звука при включении	GD	
Звук при включении	GC	
	END	

6.2 Визуальная индикация при успешном считывании

Визуальную индикацию при успешном сканировании можно отключить либо настроить ее длительность.

	SET	
Выключить индикацию	T4	
Продолжительность: 0.2 с	Т5	
Продолжительность: 0.4 с	Т6	
Продолжительность: 0.8 с	Т7	
	END	

7. Другие свойства

7.1 Диагностика

Свойства, представленные в данной главе, в основном предназначены для диагностики. Доступны следующие свойства:

Transmit software version:

будет передана версия программного обеспечения.

Transmit ROM checksum:

будет передана рассчитанная внутренней программой контрольная сумма.

Transmit settings:

будут переданы настройки сканера в виде шестнадцатеричных чисел.

Transmit ASCII printable string:

будут переданы печатаемые символы ASCII от 20 до 7F.

Transmit ASCII control string:

будут переданы непечатаемые управляющие символы ASCII от 00 до 1F.

	SET	
Transmit software version	Z1	
Transmit ROM checksum	ZY	
Transmit settings	Z3	
Transmit ASCII printable string	ZA	
Transmit ASCII control string	YV	
	END	

7.2 Настройка возможностей конфигурирования через последовательный интерфейс

Disable configuring via RS-232:

сканер игнорирует все команды, поступающие по RS-232. Принимаются только команды для кнопки сканирования и звуковой индикаций.

Enable configuring via RS-232:

сканер принимает все команды, поступающие по RS-232.

Disable trigger via RS-232:

сканер игнорирует команду $\langle Z \rangle$ для кнопки сканирования (в шестнадцатеричной – 5A), поступающую по RS-232.

Enable trigger via RS-232:

сканер принимает команду для кнопки сканирования, поступающую по RS-232.

Disable buzzer via RS-232:

сканер игнорирует команды для звуковой индикации, поступающие по RS-232.

Enable buzzer via RS-232:

сканер принимает команды (успешное считывание, в шестнадцатеричной - 42) и <E> (неудачное считывание, в шестнадцатеричной - 45) для звуковой индикации, поступающие по RS-232.

Disable Good read LED via RS-232:

сканер игнорирует команду для визуальной индикации, поступающую по RS-232.

Enable Good read LED via RS-232:

сканер принимает команду <L> (в шестнадцатеричной – 4C) для визуальной индикации, поступающую по RS-232.

Disable ACK/NAK for RS-232 commands:

сканер не передает пакеты АСК/NАК после получения команды.

Enable ACK/NAK for RS-232 commands:

сканер передает пакет <ACK> (в шестнадцатеричной - 06) после получения корректной команды и <NAK> (в шестнадцатеричной - 15) после получения некорректной команды.

Enable/disable laser commands:

сканер не включиться при нажатии на кнопку сканирования или посылки команды.

Error message – No label:

после считывания данного программирующего ШК до четырех символов прямого ввода может быть считано сканером. Данные символы будут переданы в случае, если в течение заданного времени сканером не был детектирован ни один ШК. Данная функция доступна для сканеров с включенной кнопкой сканирования. Если никаких символов прямого ввода считано не было, то данная функция игнорируется.

Error message – No decode:

после считывания данного программирующего ШК до четырех символов прямого ввода может быть считано сканером. Данные символы будут переданы в случае, если в течение заданного времени сканером был детектирован какой-либо ШК. Считывания ШК при этом не происходит. Данная функция доступна для сканеров с включенной кнопкой сканирования. Если никаких символов прямого ввода считано не было, то данная функция игнорируется.

Пример:

чтобы передать сообщения «NL<CR>» и «ND<CR>» для функций No label и No decode, соответственно, считайте последовательность ШК, указанную на рисунке. Обе функции могут быть задействованы одновременно.

	SET	
Disable configuring via RS232	TS	
Enable configuring via RS232	тт	
Disable trigger via RS232	8B	
Enable trigger via RS232	8C	
Disable buzzer via RS232	WB	
Enable buzzer via RS232	WA	
Disable good read LED via RS232	TY	
Enable good read LED via RS232	TZ	
Disable ACK/NAK for RS232 comm.	WD	
Enable ACK/NAK for RS232 comm.	WC	
Enable enable/disable laser	SR	
Disable enable/disable laser	SQ	
Clear error messages No label and No decode	TG	
	END	

	SET	
Error message No label	тн	
Error message No decode	TI	
	END	

А Устранение неполадок

Приведенная ниже диаграмма может помочь в случае, если сканер работает не так, как положено. Если с помощью данной диаграммы устранить проблему не удается, следует связаться с поставщиком.

Работает сканер или нет, можно проверить следующим способом:

- после подачи питания на сканер должна произойти звуковая индикация;
- сканер должен реагировать на нажатие на кнопку сканирования или должна происходить визуальная индикация.

В Примеры ШК

Fig. C.01. Example for UPC-A

Fig. C.02. Example for UPC-A +2

Fig. C.03. Example for UPC-A +5

Fig. C.04. Example for UPC-E

default data: 1234565

Fig. C.05. Example for UPC-E +2

default data: 213224022

Fig. C.06. Example for UPC-E +5

default data: 654321756789

Fig. C.07. Example for UPC-E1

default data: 2345670

Fig. C.08. Example for UPC-E1 +2

default data: 657832690

Fig. C.09. Example for UPC-E1 +5

default data: 098765032418

Fig. C.10. Example for EAN-13 (ISBN)

ISBN data: 0131103628

Fig. C.11. Example for EAN-13 +2

Fig. C.12. Example for EAN-13 +5

Fig. C.13. Example for EAN-8

Fig. C.14. Example for EAN-8 +2

Fig. C.15. Example for EAN-8 +5

Fig. C.16. Example for Code 39

Fig. C.17. Code 39 Full ASCII

Fig. C.18. Code 39 Italian Pharmaceutical (Full Italian Pharmaceutical)

encoded data: *V2GZD9*

Full Italian Pharmaceutical data: A908557705

Fig. C.19. Example for Tri-Optic

encoded data: \$260R01\$

Fig. C.20. Example for Codabar

encoded data: C01235D

Fig. C.21. Example for Codabar ABC

encoded data: C01234D

4 56789

encoded data: D56789A

Codabar ABC data: 0123456789

Fig. C.22. Example for Codabar CX

encoded data: A12344C

encoded data: B56784B

Codabar CX data: 1234456784

Fig. C.23. Example for Industrial 2of5

1234567895

Fig. C.24. Example for Interleaved 2of5 with bearer bars

0123456784

Fig. C.30. Example for MSI/Plessey with MOD 10 Checksum

encoded data: 024687

Fig. C.25. Example for S-Code

Fig. C.31. Example for Telepen numeric (Telepen ASCII)

Telepen ASCII data: Telepen

Fig. C.26. Example for Matrix 2of5

Fig. C.32. Example for UK/Plessey

encoded data: 02468F8

Fig. C.27 Example for Chinese Post

0464 100050 encoded data: 04641000501

Fig. C.33. Example for Code 128

0135792468

Fig. C.28 Example for Korean Postal Authority code

Fig. C.34. Example for EAN-128

encoded data: <FNC1>2143658709

Fig. C.29. Example for IATA

1234567890

Fig. C.35. Example for Code 93

Fig. C.36. Example for Code 11

encoded data: 1234-56784

Fig. C.37. Example for RSS-14

encoded data: 65473728281919

Fig. C.38. Example for RSS-14 stacked

0198321456098768

encoded data: 98321456098768

Fig. C.39. Example for RSS-14 truncated

encoded data: 00012345678905

Fig. C.40. Example for RSS Limited

0117834783468340

encoded data: 17834783468340

Fig. C.41. Example for RSS Expanded

encoded data: 012345ABCDE

Fig. C.42. Example for Composite Component A

encoded RSS-14 data: 01234567891231 encoded CC-A data: CC-A : up to 56 characters

default data:

0101234567891231CC-A : up to 56 characters

Fig. C.43. Example for Composite Component B

encoded RSS-14 data: 56128923901259 encoded CC-B data: CC-B:encodes up to 338 alphanumeric characters

default data:

0156128923901255CC-B:encodes up to 338 alphanumeric characters

Fig. C.44. Example for Composite Component C

encoded EAN-128 data: <FNC1>503012345678 encoded CC-C data: 021301234567893724<GS> 101234567ABCDEFG

default data: 503012345678021301234567893724<GS> 101234567ABCDEFG

Fig. C.45. Example for DataMatrix (ECC200)

DataMatrix sample bar code.

Fig. C.46. Example for Aztec

Aztec sample bar code.

Fig. C.47. Example for Aztec runes

encoded data: 25

Fig. C.48. Example for QR Code (Model 2)

QR Code sample bar code.

Fig. C.49. Example for Micro QR Code (Model 4)

1415926535897

Fig. C.50. Example for Maxicode (Mode 4)

MaxiCode sample bar code.

Fig. C.51. Example for PDF417

PDF417 sample bar code.

Fig. C.52. Example for MicroPDF417

MicroPDF417 sample bar code.